Local indecomposability of Tate modules of non-CM abelian varieties with real multiplication
HTML articles powered by AMS MathViewer
- by Haruzo Hida
- J. Amer. Math. Soc. 26 (2013), 853-877
- DOI: https://doi.org/10.1090/S0894-0347-2013-00762-6
- Published electronically: March 18, 2013
- PDF | Request permission
Abstract:
Indecomposability of $p$-adic Tate modules over the $p$-inertia group for non-CM (partially $p$-ordinary) abelian varieties with real multiplication is proven under unramifiedness of $p$ in the base field and in the multiplication field.References
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037
- Goro Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol. 46, Princeton University Press, Princeton, NJ, 1998. MR 1492449, DOI 10.1515/9781400883943
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, Research Notes in Mathematics, vol. 7, A K Peters, Ltd., Wellesley, MA, 1998. With the collaboration of Willem Kuyk and John Labute; Revised reprint of the 1968 original. MR 1484415
- Gary Cornell and Joseph H. Silverman (eds.), Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984. MR 861969, DOI 10.1007/978-1-4613-8655-1
- N. Bourbaki, Algébre, Hermann, Paris, 1958.
- Kevin Buzzard, Fred Diamond, and Frazer Jarvis, On Serre’s conjecture for mod $\ell$ Galois representations over totally real fields, Duke Math. J. 155 (2010), no. 1, 105–161. MR 2730374, DOI 10.1215/00127094-2010-052
- G. Banaszak, W. Gajda, and P. Krasoń, On Galois representations for abelian varieties with complex and real multiplications, J. Number Theory 100 (2003), no. 1, 117–132. MR 1971250, DOI 10.1016/S0022-314X(02)00121-X
- Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291–317. MR 1202394, DOI 10.1007/BF01444889
- Brian Conrad, Several approaches to non-Archimedean geometry, $p$-adic geometry, Univ. Lecture Ser., vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 9–63. MR 2482345, DOI 10.1090/ulect/045/02
- A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5–96 (1996). MR 1383213
- A. J. De Jong, Erratum to: “Crystalline Dieudonné module theory via formal and rigid geometry” Inst. Hautes Études Sci. Publ. Math. No. 87 (1998), 175.
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- M. Emerton, A $p$-adic variational Hodge conjecture and modular forms with complex multiplication, preprint
- H. Hida, Elliptic Curves and Arithmetic Invariants, Springer Monographs in Mathematics, to be published in 2013.
- A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Publications IHES 4 (1960), 8 (1961), 11 (1961), 17 (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967).
- David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602
- Eknath Ghate, Ordinary forms and their local Galois representations, Algebra and number theory, Hindustan Book Agency, Delhi, 2005, pp. 226–242. MR 2193355
- Eknath Ghate and Vinayak Vatsal, On the local behaviour of ordinary $\Lambda$-adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2143–2162 (2005) (English, with English and French summaries). MR 2139691
- B. Balasubramanyam, E. Ghate and V. Vatsal, On local Galois representations attached to ordinary Hilbert modular forms, preprint 2012
- Haruzo Hida, Geometric modular forms and elliptic curves, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2894984
- Haruzo Hida, Automorphism groups of Shimura varieties, Doc. Math. 11 (2006), 25–56. MR 2226268
- Haruzo Hida, The Iwasawa $\mu$-invariant of $p$-adic Hecke $L$-functions, Ann. of Math. (2) 172 (2010), no. 1, 41–137. MR 2680417, DOI 10.4007/annals.2010.172.41
- Haruzo Hida, Constancy of adjoint $\scr L$-invariant, J. Number Theory 131 (2011), no. 7, 1331–1346. MR 2782844, DOI 10.1016/j.jnt.2011.02.001
- Haruzo Hida, Irreducibility of the Igusa tower over unitary Shimura varieties, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 187–203. MR 2767517
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766
- N. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976–78) Lecture Notes in Math., vol. 868, Springer, Berlin-New York, 1981, pp. 138–202. MR 638600
- Nicholas M. Katz, $p$-adic $L$-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199–297. MR 513095, DOI 10.1007/BF01390187
- Toshitsune Miyake, On automorphism groups of the fields of automorphic functions, Ann. of Math. (2) 95 (1972), 243–252. MR 300977, DOI 10.2307/1970798
- Rutger Noot, Abelian varieties—Galois representation and properties of ordinary reduction, Compositio Math. 97 (1995), no. 1-2, 161–171. Special issue in honour of Frans Oort. MR 1355123
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- A. Ogus, Hodge cycles and crystalline cohomology, in: Hodge Cycles, Motives, and Shimura Varieties, Chapter VI, Lecture Notes in Math. 900 (1982), 357–414.
- Haruzo Hida, $p$-adic automorphic forms on Shimura varieties, Springer Monographs in Mathematics, Springer-Verlag, New York, 2004. MR 2055355, DOI 10.1007/978-1-4684-9390-0
- M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), no. 3, 255–335 (French). MR 515050
- Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751–804. MR 457455, DOI 10.2307/2373815
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- Goro Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144–222. MR 257031, DOI 10.2307/1970604
- J. T. Tate, $p$-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158–183. MR 0231827
- B. Zhao, Local indecomposability of Hilbert modular Galois representations, preprint, 2012 (posted in web: arXiv:1204.4007v1 [math.NT])
Bibliographic Information
- Haruzo Hida
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
- MR Author ID: 213427
- Email: hida@math.ucla.edu
- Received by editor(s): April 1, 2012
- Received by editor(s) in revised form: December 27, 2012
- Published electronically: March 18, 2013
- Additional Notes: The author is partially supported by NSF grants DMS 0753991 and DMS 0854949
- © Copyright 2013 American Mathematical Society
- Journal: J. Amer. Math. Soc. 26 (2013), 853-877
- MSC (2010): Primary 14G35, 11G15, 11G18, 11F80; Secondary 11G10, 14L05
- DOI: https://doi.org/10.1090/S0894-0347-2013-00762-6
- MathSciNet review: 3037789