Rank and genus of 3-manifolds
HTML articles powered by AMS MathViewer
- by Tao Li;
- J. Amer. Math. Soc. 26 (2013), 777-829
- DOI: https://doi.org/10.1090/S0894-0347-2013-00767-5
- Published electronically: February 27, 2013
- PDF | Request permission
Abstract:
We construct a counterexample to the Rank versus Genus Conjecture, i.e. a closed orientable hyperbolic 3-manifold with rank of its fundamental group smaller than its Heegaard genus. Moreover, we show that the discrepancy between rank and Heegaard genus can be arbitrarily large for hyperbolic 3-manifolds. We also construct toroidal such examples containing hyperbolic JSJ pieces.References
- Miklós Abért and Nikolay Nikolov, Rank gradient, cost of groups and the rank versus Heegaard genus problem. arXiv:math/0701361
- David Bachman, Saul Schleimer, and Eric Sedgwick, Sweepouts of amalgamated 3-manifolds, Algebr. Geom. Topol. 6 (2006), 171–194. MR 2199458, DOI 10.2140/agt.2006.6.171
- M. Boileau and H. Zieschang, Heegaard genus of closed orientable Seifert $3$-manifolds, Invent. Math. 76 (1984), no. 3, 455–468. MR 746538, DOI 10.1007/BF01388469
- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275–283. MR 918537, DOI 10.1016/0166-8641(87)90092-7
- I. A. Grushko, On the bases of a free product of groups. Matematicheskii Sbornik 8 (1940), 169–182.
- Wolfgang Haken, Some results on surfaces in $3$-manifolds, Studies in Modern Topology, Studies in Mathematics, Vol. 5, Math. Assoc. America, 1968, pp. 39–98. MR 224071
- Wolfgang Haken, Various aspects of the three-dimensional Poincaré problem, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham Publishing Co., Chicago, IL, 1970, pp. 140–152. MR 273624
- A. E. Hatcher, On the boundary curves of incompressible surfaces, Pacific J. Math. 99 (1982), no. 2, 373–377. MR 658066
- Allen Hatcher, Basic Topology of Three Manifolds. Online notes, available at http://www.math.cornell.edu/hatcher/.
- A. Hatcher and W. Thurston, Incompressible surfaces in $2$-bridge knot complements, Invent. Math. 79 (1985), no. 2, 225–246. MR 778125, DOI 10.1007/BF01388971
- John Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001), no. 3, 631–657. MR 1838999, DOI 10.1016/S0040-9383(00)00033-1
- Tsuyoshi Kobayashi, Classification of unknotting tunnels for two bridge knots, Proceedings of the Kirbyfest (Berkeley, CA, 1998) Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 259–290. MR 1734412, DOI 10.2140/gtm.1999.2.259
- Marc Lackenby, The Heegaard genus of amalgamated 3-manifolds, Geom. Dedicata 109 (2004), 139–145. MR 2113191, DOI 10.1007/s10711-004-6553-y
- Marc Lackenby, The asymptotic behaviour of Heegaard genus, Math. Res. Lett. 11 (2004), no. 2-3, 139–149. MR 2067463, DOI 10.4310/MRL.2004.v11.n2.a1
- Tao Li, Heegaard surfaces and measured laminations. I. The Waldhausen conjecture, Invent. Math. 167 (2007), no. 1, 135–177. MR 2264807, DOI 10.1007/s00222-006-0009-y
- Tao Li, Heegaard surfaces and measured laminations. II. Non-Haken 3-manifolds, J. Amer. Math. Soc. 19 (2006), no. 3, 625–657. MR 2220101, DOI 10.1090/S0894-0347-06-00520-0
- Tao Li, Saddle tangencies and the distance of Heegaard splittings, Algebr. Geom. Topol. 7 (2007), 1119–1134. MR 2336252, DOI 10.2140/agt.2007.7.1119
- Tao Li, On the Heegaard splittings of amalgamated 3-manifolds, Workshop on Heegaard Splittings, Geom. Topol. Monogr., vol. 12, Geom. Topol. Publ., Coventry, 2007, pp. 157–190. MR 2408246, DOI 10.2140/gtm.2007.12.157
- Tao Li, Heegaard surfaces and the distance of amalgamation, Geom. Topol. 14 (2010), no. 4, 1871–1919. MR 2680206, DOI 10.2140/gt.2010.14.1871
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024, DOI 10.1007/978-3-642-61896-3
- Yoav Moriah and Hyam Rubinstein, Heegaard structures of negatively curved $3$-manifolds, Comm. Anal. Geom. 5 (1997), no. 3, 375–412. MR 1487722, DOI 10.4310/CAG.1997.v5.n3.a1
- Hossein Namazi and Juan Souto, Heegaard splittings and pseudo-Anosov maps, Geom. Funct. Anal. 19 (2009), no. 4, 1195–1228. MR 2570321, DOI 10.1007/s00039-009-0025-3
- Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159
- Grisha Perelman, Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109
- Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245
- Yo’av Rieck, Heegaard structures of manifolds in the Dehn filling space, Topology 39 (2000), no. 3, 619–641. MR 1746912, DOI 10.1016/S0040-9383(99)00026-9
- Yo’av Rieck and Eric Sedgwick, Persistence of Heegaard structures under Dehn filling, Topology Appl. 109 (2001), no. 1, 41–53. MR 1804562, DOI 10.1016/S0166-8641(99)00147-9
- Martin Scharlemann, Local detection of strongly irreducible Heegaard splittings, Topology Appl. 90 (1998), no. 1-3, 135–147. MR 1648310, DOI 10.1016/S0166-8641(97)00184-3
- Martin Scharlemann, Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math. 228 (2006), no. 2, 325–348. MR 2274524, DOI 10.2140/pjm.2006.228.325
- Martin Scharlemann, Heegaard splittings of compact 3-manifolds, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 921–953. MR 1886684
- Martin Scharlemann and Jennifer Schultens, The tunnel number of the sum of $n$ knots is at least $n$, Topology 38 (1999), no. 2, 265–270. MR 1660345, DOI 10.1016/S0040-9383(98)00002-0
- Martin Scharlemann and Maggy Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006), 593–617. MR 2224466, DOI 10.2140/gt.2006.10.593
- Martin Scharlemann and Abigail Thompson, Thin position for $3$-manifolds, Geometric topology (Haifa, 1992) Contemp. Math., vol. 164, Amer. Math. Soc., Providence, RI, 1994, pp. 231–238. MR 1282766, DOI 10.1090/conm/164/01596
- Jennifer Schultens, The classification of Heegaard splittings for (compact orientable surface)$\,\times \, S^1$, Proc. London Math. Soc. (3) 67 (1993), no. 2, 425–448. MR 1226608, DOI 10.1112/plms/s3-67.2.425
- Jennifer Schultens and Richard Weidman, On the geometric and the algebraic rank of graph manifolds, Pacific J. Math. 231 (2007), no. 2, 481–510. MR 2346507, DOI 10.2140/pjm.2007.231.481
- Peter B. Shalen, Hyperbolic volume, Heegaard genus and ranks of groups, Workshop on Heegaard Splittings, Geom. Topol. Monogr., vol. 12, Geom. Topol. Publ., Coventry, 2007, pp. 335–349. MR 2408254, DOI 10.2140/gtm.2007.12.335
- Juan Souto, The rank of the fundamental group of certain hyperbolic 3-manifolds fibering over the circle, The Zieschang Gedenkschrift, Geom. Topol. Monogr., vol. 14, Geom. Topol. Publ., Coventry, 2008, pp. 505–518. MR 2484715, DOI 10.2140/gtm.2008.14.505
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- Friedhelm Waldhausen, Some problems on $3$-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp. 313–322. MR 520549
- J. H. C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math. (2) 37 (1936), no. 4, 782–800. MR 1503309, DOI 10.2307/1968618
Bibliographic Information
- Tao Li
- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
- Email: taoli@bc.edu
- Received by editor(s): September 6, 2011
- Received by editor(s) in revised form: September 27, 2012
- Published electronically: February 27, 2013
- Additional Notes: The author was partially supported by NSF grants DMS-1005556 and DMS-0705285
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 777-829
- MSC (2010): Primary 57M05, 57M27, 57M50, 57N10
- DOI: https://doi.org/10.1090/S0894-0347-2013-00767-5
- MathSciNet review: 3037787