Localizing virtual cycles by cosections
HTML articles powered by AMS MathViewer
- by Young-Hoon Kiem and Jun Li;
- J. Amer. Math. Soc. 26 (2013), 1025-1050
- DOI: https://doi.org/10.1090/S0894-0347-2013-00768-7
- Published electronically: March 27, 2013
- PDF | Request permission
Abstract:
We show that a cosection of the obstruction sheaf of a perfect obstruction theory localizes the virtual cycle to the non-surjective locus of the cosection. We construct a localized Gysin map and localized virtual cycles. Various applications of this construction are discussed.References
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI 10.4007/annals.2009.170.1307
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- Jim Bryan and Naichung Conan Leung, The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000), no. 2, 371–410. MR 1750955, DOI 10.1090/S0894-0347-00-00326-X
- Jim Bryan and Naichung Conan Leung, Generating functions for the number of curves on abelian surfaces, Duke Math. J. 99 (1999), no. 2, 311–328. MR 1708022, DOI 10.1215/S0012-7094-99-09911-8
- Huai-Liang Chang and Young-Hoon Kiem Poincaré invariants are Seiberg-Witten invariants. To appear in Geometry and Topology, arXiv:1205.0848.
- Huai-Liang Chang and Jun Li, Gromov-Witten invariants of stable maps with fields, Int. Math. Res. Not. IMRN 18 (2012), 4163–4217. MR 2975379, DOI 10.1093/imrn/rnr186
- Huai-Liang Chang and Jun Li. In preparation.
- S. K. Donaldson, Yang-Mills invariants of four-manifolds, Geometry of low-dimensional manifolds, 1 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 150, Cambridge Univ. Press, Cambridge, 1990, pp. 5–40. MR 1171888
- Markus Dürr, Alexandre Kabanov, and Christian Okonek, Poincaré invariants, Topology 46 (2007), no. 3, 225–294. MR 2319736, DOI 10.1016/j.top.2007.02.004
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), no. 1, 173–199. MR 1728879, DOI 10.1007/s002229900028
- Young-Hoon Kiem and Jun Li. Gromov-Witten invariants of varieties with holomorphic 2-forms. ArXiv:0707.2986.
- Young-Hoon Kiem and Jun Li, Low degree GW invariants of spin surfaces, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1449–1475. MR 2918169, DOI 10.4310/PAMQ.2011.v7.n4.a17
- Young-Hoon Kiem and Jun Li, Low degree GW invariants of surfaces II, Sci. China Math. 54 (2011), no. 8, 1679–1706. MR 2824966, DOI 10.1007/s11425-011-4258-x
- Young-Hoon Kiem and Jun Li, A wall crossing formula of Donaldson-Thomas invariants without Chern-Simons functional, Asian J. Math. 17 (2013), no. 1, 63–94.
- Andrew Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–536. MR 1719823, DOI 10.1007/s002220050351
- Bumsig Kim, Andrew Kresch, and Tony Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003), no. 1-2, 127–136. MR 1958379, DOI 10.1016/S0022-4049(02)00293-1
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927
- Junho Lee, Family Gromov-Witten invariants for Kähler surfaces, Duke Math. J. 123 (2004), no. 1, 209–233. MR 2060027, DOI 10.1215/S0012-7094-04-12317-6
- Junho Lee, Holomorphic 2-forms and vanishing theorems for Gromov-Witten invariants, Canad. Math. Bull. 52 (2009), no. 1, 87–94. MR 2494314, DOI 10.4153/CMB-2009-011-1
- Junho Lee and Thomas H. Parker, A structure theorem for the Gromov-Witten invariants of Kähler surfaces, J. Differential Geom. 77 (2007), no. 3, 483–513. MR 2362322
- Jun Li, A note on enumerating rational curves in a $K3$ surface, Geometry and nonlinear partial differential equations (Hangzhou, 2001) AMS/IP Stud. Adv. Math., vol. 29, Amer. Math. Soc., Providence, RI, 2002, pp. 53–62. MR 1926435, DOI 10.1090/amsip/029/07
- Jun Li and Wei-Ping Li, Two point extremal Gromov-Witten invariants of Hilbert schemes of points on surfaces, Math. Ann. 349 (2011), no. 4, 839–869. MR 2777035, DOI 10.1007/s00208-010-0542-2
- Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI 10.1090/S0894-0347-98-00250-1
- Jun Li and Gang Tian, Comparison of algebraic and symplectic Gromov-Witten invariants, Asian J. Math. 3 (1999), no. 3, 689–728. MR 1793677, DOI 10.4310/AJM.1999.v3.n3.a7
- John Mather, Notes on topological stability, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 4, 475–506. MR 2958928, DOI 10.1090/S0273-0979-2012-01383-6
- D. Maulik and R. Pandharipande, New calculations in Gromov-Witten theory, Pure Appl. Math. Q. 4 (2008), no. 2, Special Issue: In honor of Fedor Bogomolov., 469–500. MR 2400883, DOI 10.4310/PAMQ.2008.v4.n2.a7
- D. Maulik, R. Pandharipande, and R. P. Thomas, Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010), no. 4, 937–996. With an appendix by A. Pixton. MR 2746343, DOI 10.1112/jtopol/jtq030
- A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010), no. 3, 523–557. MR 2587340, DOI 10.1007/s00222-009-0223-5
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
Bibliographic Information
- Young-Hoon Kiem
- Affiliation: Department of Mathematics and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Korea
- Email: kiem@math.snu.ac.kr
- Jun Li
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- MR Author ID: 1093262
- Email: jli@math.stanford.edu
- Received by editor(s): February 11, 2011
- Received by editor(s) in revised form: November 28, 2012
- Published electronically: March 27, 2013
- Additional Notes: The first author was partially supported by NRF grant 2011-0027969
The second author was partially supported by NSF grant NSF-0601002 - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 1025-1050
- MSC (2010): Primary 14N35
- DOI: https://doi.org/10.1090/S0894-0347-2013-00768-7
- MathSciNet review: 3073883