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HOMOLOGICAL MIRROR SYMMETRY

FOR PUNCTURED SPHERES

MOHAMMED ABOUZAID, DENIS AUROUX, ALEXANDER I. EFIMOV,
LUDMIL KATZARKOV, AND DMITRI ORLOV

1. Introduction

1.1. Background. In its original formulation, Kontsevich’s celebrated homological
mirror symmetry conjecture [26] concerns mirror pairs of Calabi-Yau varieties, for
which it predicts an equivalence between the derived category of coherent sheaves
of one variety and the derived Fukaya category of the other. This conjecture has
been studied extensively, and while evidence has been gathered in a number of
examples including abelian varieties [16, 23, 28], it has so far only been proved for
elliptic curves [34], the quartic K3 surface [37], and their products [7].

Kontsevich was also the first to suggest that homological mirror symmetry can
be extended to a much more general setting [27], by considering Landau-Ginzburg
models. Mathematically, a Landau-Ginzburg model is a pair (X,W ) consisting of a
variety X and a holomorphic function W : X → C called superpotential. As far as
homological mirror symmetry is concerned, the symplectic geometry of a Landau-
Ginzburg model is determined by its Fukaya category, studied extensively by Seidel
(see in particular [39]), while the B-model is determined by the triangulated cate-
gory of singularities of the superpotential [32].

After the seminal works of Batyrev, Givental, Hori, Vafa, and many others,
there are many known examples of Landau-Ginzburg mirrors to Fano varieties,
especially in the toric case [13,14,17] where the examples can be understood using
T -duality, generalizing the ideas of Strominger, Yau, and Zaslow [44] beyond the
case of Calabi-Yau manifolds. One direction of the mirror symmetry conjecture,
in which the B-model consists of coherent sheaves on a Fano variety, has been
established for toric Fano varieties in [1,8,11,15,46], as well as for del Pezzo surfaces
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[9]. A proof in the other direction, in which the B-model is the category of matrix
factorizations of the superpotential, has also been announced [5].

While Kontsevich’s suggestion was originally studied for Fano manifolds, a more
recent (and perhaps unexpected) development first proposed by the fourth author is
that mirror symmetry also extends to varieties of general type, many of which also
admit mirror Landau-Ginzburg models [4,20,22]. The first instance of homological
mirror symmetry in this setting was established for the genus 2 curve by Seidel [40].
Namely, Seidel has shown that the derived Fukaya category of a smooth genus
2 curve is equivalent to the triangulated category of singularities of a certain 3-
dimensional Landau-Ginzburg model (one notable feature of mirrors of varieties
of general type is that they tend to be higher-dimensional). Seidel’s argument
was subsequently extended to higher genus curves [12], to pairs of pants and their
higher-dimensional analogues [42], and to Calabi-Yau hypersurfaces in projective
space [43].

Unfortunately, the ordinary Fukaya category consisting of closed Lagrangians
is insufficient in order to fully state the homological mirror conjecture when the
B-side is a Landau-Ginzburg model which fails to be proper or a variety which
fails to be smooth. The structure sheaf of a non-proper component of the critical
fiber of a Landau-Ginzburg model, or that of a singular point in the absence of
any superpotential, generally has endomorphism algebras which are not of finite
cohomological dimension and hence cannot have mirrors in the ordinary Fukaya
category, which is cohomologically finite. As all smooth affine varieties of the same
dimension have isomorphic derived categories of coherent sheaves with compact
support, one is led to seek a category of Lagrangians which would contain objects
that are mirror to more general sheaves or matrix factorizations.

It is precisely to fill this role that the wrapped Fukaya category was constructed
[6]. This Fukaya category, whose objects also include non-compact Lagrangian
submanifolds, more accurately reflects the symplectic geometry of open symplectic
manifolds, and by recent work [2, 19], is known in some generality to be homolog-
ically smooth in the sense of Kontsevich [29] (homological smoothness also holds
for categories of matrix factorizations [30, 31, 35]).

In this paper, we give the first non-trivial verification that these categories are
indeed relevant to homological mirror symmetry: the non-compact Lagrangians
we shall study will correspond to structure sheaves of irreducible components of
a quasi-projective variety, considered as objects of its category of singularities. In
particular, we provide the first computation of wrapped Fukaya categories beyond
the case of cotangent bundles, studied in [3] using string topology. Since the writing
of this paper, Bocklandt found a connection to non-commutative algebras coming
from dimer models which allows an extension of our results to general punctured
surfaces [10].

As a final remark, we note that these categories should be of interest even when
considering mirrors of compact symplectic manifolds. Indeed, since Seidel’s ICM
address [38], the standard approach to proving homological mirror symmetry in
this case is to first prove it for the complement of a divisor and then solve a defor-
mation problem. As we have just explained, a proper formulation of homological
mirror symmetry for the complement involves the wrapped Fukaya category. More
speculatively [41], one expects that the study of the wrapped Fukaya category will
be amenable to sheaf-theoretic techniques. The starting point of such a program
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is the availability of natural restriction functors (to open subdomains) [6], which
are expected to be mirror to restriction functors from the category of sheaves of
a reducible variety to the category of sheaves on each component. This suggests
that it might be possible to study homological mirror symmetry by a combina-
tion of sheaf-theoretic techniques and deformation theory, reducing the problem to
elementary building blocks such as pairs of pants. While this remains a distant
perspective, it very much motivates the present study.

1.2. Main results. In this paper, we study homological mirror symmetry for an
open genus 0 curve C, namely, P1 minus a set of n ≥ 3 points. A Landau-Ginzburg
model mirror to C can be constructed by viewing C as a hypersurface in (C∗)2

(which can be compactified to a rational curve in P1 ×P1 or a Hirzebruch surface).
The procedure described in [22] (or those in [20] or [4]) then yields a (non-compact)
toric 3-fold X(n), together with a superpotential W : X(n) → C, which we take
as the mirror to C. For n = 3 the Landau-Ginzburg model (X(3),W ) is the 3-
dimensional affine space C3 with the superpotential W = xyz, while for n > 3
points X(n) is more complicated (it is a toric resolution of a 3-dimensional singular
affine toric variety); see Section 5 and Figure 5 for details.

We focus on one side of homological mirror symmetry, in which we consider the
wrapped Fukaya category of C (as defined in [2,6]), and the associated triangulated
derived category DW(C) (see Section (3j) of [39]). Our main theorem asserts that
this triangulated category is equivalent to the triangulated category of singularities
[32] of the singular fiber W−1(0) of (X(n),W ). In fact, we obtain a slightly stronger
result than stated below, namely a quasi-equivalence between the natural A∞-
enhancements of these two categories.

Theorem 1.1. Let C be the complement of a finite set of n ≥ 3 points in P1, and
let (X(n),W ) be the Landau-Ginzburg model defined in Section 5. Then the derived
wrapped Fukaya category of C, DW(C), is equivalent to the triangulated category
of singularities Dsg(W

−1(0)).

The other side of homological mirror symmetry is generally considered to be out
of reach of current technology for these examples, due to the singular nature of the
critical locus of W .

Remark 1.2. The case n = 0 falls under the rubric of mirror symmetry for Fano
varieties and is easy to prove since the equatorial circle in S2 is the unique non-
displaceable Lagrangian and the mirror superpotential has exactly one non-degen-
erate isolated singularity. Mirror symmetry for C is trivial in this direction since
the Fukaya category completely vanishes in this case and the mirror superpotential
has no critical point. Finally, the case n = 2 can be recovered as a degenerate case
of our analysis but was already essentially known to experts because the cylinder
is symplectomorphic to the cotangent bundle of the circle and Fukaya categories of
cotangent bundles admit quite explicit descriptions using string topology [3, 18].

The general strategy of proof is similar to that used by Seidel for the genus 2
curve and is inspired by it. Namely, we identify specific generators of the respective
categories (in Section 4 for DW(C), using a generation result proved in Appendix
A, and in Section 6 for Dsg(W

−1(0))), and we show that the corresponding A∞-
subcategories on either side are equivalent by appealing to an algebraic classification
lemma (Section 3); see also Remark 4.2 for more about generation. A general
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result due to Keller (see Theorem 3.8 of [25] or Lemma 3.34 of [39]) implies that
the categories DW(C) and Dsg(W

−1(0)) are therefore equivalent to the derived
categories of the same A∞-category and hence are equivalent to each other.

This strategy of proof can be extended to higher genus punctured Riemann sur-
faces, the main difference being that one needs to consider larger sets of generating
objects (which in the general case leads to a slightly more technically involved ar-
gument). However, there is a special case in which the generalization of our result
is particularly straightforward, namely the case of unramified cyclic covers of punc-
tured spheres. The idea that Fukaya categories of unramified covers are closely
related to those of the base is already present in Seidel’s work [40] and the argu-
ment we use is again very similar (this approach can be used in higher dimensions
as well, as evidenced in Sheridan’s work [42]). As an illustration, we prove the
following result in Section 7:

Theorem 1.3. Given an unramified cyclic D-fold cover C of P1 − {3 points},
there exists an action of G = Z/D on the Landau-Ginzburg model (X(3),W ) such
that the derived wrapped Fukaya category DW(C) is equivalent to the equivariant
triangulated category of singularities DG

sg(W
−1(0)).

Remark 1.4. The main difference between our approach and that developed in
Seidel’s and Sheridan’s papers [40, 42] is that, rather than compact (possibly im-
mersed) Lagrangians, we consider the wrapped Fukaya category, which is strictly
larger. The Floer homology of the immersed closed curve considered by Seidel in
[40] can be recovered from our calculations, but not vice versa. There is an obvi-
ous motivation for restricting to that particular object (and its higher-dimensional
analogue [42]): even though it does not determine the entire A-model in the open
case, it gives access to the Fukaya category of closed Riemann surfaces or projective
Fermat hypersurfaces in a fairly direct manner. On the other hand, open Riemann
surfaces and other exact symplectic manifolds are interesting both in themselves
and as building blocks of more complicated manifolds.

We end this introduction with a brief outline of this paper’s organization: Sec-
tion 2 explicitly defines a category A and introduces rudiments of homological
algebra which are used, in the subsequent section, to classify A∞-structures on
this category up to equivalence. Section 4 proves that A is equivalent to a coho-
mological subcategory of the wrapped Fukaya category of a punctured sphere and
uses the classification result to identify the A∞-structure induced by the count of
holomorphic curves. In this section, we also prove that our distinguished collection
of objects strongly generates the wrapped Fukaya category.

The mirror superpotential is described in Section 5, and a collection of sheaves
whose endomorphism algebra in the category of matrix factorizations is isomorphic
to A is identified in the next section, in which the A∞-structure coming from the
natural dg enhancement is also computed and a generation statement proved. At
this stage, all the results needed for the proof of Theorem 1.1 are in place. Section
7 completes the main part of the paper by constructing the various categories
appearing in the statement of Theorem 1.3. The paper ends with two appendices;
the first proves a general result providing strict generators for wrapped Fukaya
categories of curves, and the second shows that the categories of singularities that
we study are idempotent complete.
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2. A∞-structures

Let A be a small Z-graded category over a field k; i.e. the morphism spaces
A(X,Y ) are Z-graded k-modules and the compositions

A(Y, Z)⊗A(X,Y ) −→ A(X,Z)

are morphisms of Z-graded k-modules. By grading we will always mean Z-gradings.
By an A∞-structure on A we mean a collection of graded maps

mk : A(Xk−1, Xk)⊗ · · · ⊗ A(X0, X1) −→ A(X0, Xk), Xi ∈ A, k ≥ 1,

of degree deg(mk) = 2 − k, with m1 = 0 and m2 equal to the usual composition
in A, such that all together they define an A∞-category, i.e. they satisfy the A∞-
associativity equations

(2.1)
∑
s,l,t

s+l+t=k

(−1)s+ltmk−l+1(id
⊗s ⊗ml ⊗ id⊗t) = 0,

for all k ≥ 1. Note that additional signs appear when these formulas are applied to
elements, according to the Koszul sign rule (f⊗g)(x⊗y) = (−1)deg g·deg xf(x)⊗g(y)
(see [24, 39]).

Two A∞-structures m and m′ on A are said to be strictly homotopic if there
exists an A∞-functor f from (A,m) to (A,m′) that acts identically on objects and
for which f1 = id as well.

We also recall that an A∞-functor f consists of a map f̄ : Ob(A,m) → Ob(A,m′)
and graded maps

fk : A(Xk−1, Xk)⊗ · · · ⊗ A(X0, X1) −→ A(f̄X0, f̄Xk), Xi ∈ A, k ≥ 1,

of degree 1− k which satisfy the equations

(2.2)∑
r

∑
u1,...,ur

u1+···+ur=k

(−1)εm′
r(fu1

⊗· · ·⊗fur
) =

∑
s,l,t

s+l+t=k

(−1)s+ltfk−l+1(id
⊗s ⊗ml⊗id⊗t),

where the sign on the left-hand side is given by

ε = (r − 1)(u1 − 1) + (r − 2)(u2 − 1) + · · ·+ ir−1.

Now we introduce a k-linear category A that plays a central role in our consid-
erations. It depends on an integer n ≥ 3 and is defined by the following rule:
(2.3)

Ob(A) = {X1, . . . , Xn}, A(Xi, Xj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k[xi, yi]/(xiyi) for j = i,

k[xi+1]ui,i+1 = ui,i+1 k[yi] for j = i+ 1,

k[yi−1] vi,i−1 = vi,i−1 k[xi] for j = i− 1,

0 otherwise.

Here the indices are mod n; i.e. we put Xn+1 = X1 and xn+1 = x1, yn+1 = y1.
Compositions in this category are defined as follows. First of all, the above formu-

las already define A(Xi, Xi) as k-algebras and A(Xi, Xj) as A(Xi, Xi)–A(Xj , Xj)-
bimodules. To complete the definition, we set

(xk
i ui−1,i) ◦ (vi,i−1x

l
i) := xk+l+1

i , (vi,i−1x
l
i) ◦ (xk

i ui−1,i) := yk+l+1
i−1
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for any two morphisms xk
i ui−1,i ∈ A(Xi−1, Xi) and vi,i−1x

l
i ∈ A(Xi, Xi−1). All the

other compositions vanish. Thus, A is defined as a k-linear category.
Choosing some collection of odd integers p1, . . . , pn, q1, . . . , qn, we can define a

grading on A by the formulas

deg(ui−1,i : Xi−1 −→ Xi) := pi, deg(vi,i−1 : Xi −→ Xi−1) := qi.

That implies deg xi = deg yi−1 = pi + qi. All these gradings are refinements of the
same Z/2-grading on A.

In what follows, we will require that the following conditions hold:

(2.4) p1, . . . , pn, q1, . . . , qn are odd, and p1 + · · ·+ pn = q1 + · · ·+ qn = n− 2.

Definition 2.1. For such collections of p = {pi} and q = {qi} we denote by A(p,q)

the corresponding Z-graded category.

We are interested in describing all A∞-structures on the category A(p,q). As we
will see, these structures are in bijection with pairs (a, b) of elements a, b ∈ k.

Let A be a small Z-graded category over a field k. It will be convenient to
consider the bigraded Hochschild complex CC•(A)•,

CCk+l(A)l =
∏

X0,...,Xk∈A
Homl(A(Xk−1, Xk)⊗ · · · ⊗ A(X0, X1), A(X0, Xk))

with the Hochschild differential d of bidegree (1, 0) defined by

dT (ak+1, . . . , a1) = (−1)(k+l)(deg(a1)−1)+1T (ak+1, . . . , a2)a1

+

k∑
j=1

(−1)εj+(k+l)−1T (ak+1, . . . , aj+1aj , . . . , a1) + (−1)εk+(k+l)ak+1T (ak, . . . , a1),

where the sign is defined by the rule εj =
∑j

i=1 deg ai−j. We denote by HHk+l(A)l

the bigraded Hochschild cohomology.
Denote by A∞S(A) the set of A∞-structures on A up to strict homotopy.
Basic obstruction theory implies the following proposition, which will be suffi-

cient for our purposes.

Proposition 2.2. Assume that the small Z-graded k-linear category A satisfies
the conditions

(2.5) HH2(A)j = 0 for j ≤ −1 and j �= −l

and

(2.6) HH3(A)j = 0 for j < −l,

for some positive integer l ≥ 1. Then for any φ ∈ HH2(A)−l there is an A∞-struc-
ture mφ with m3 = · · · = ml+1 = 0, for which the class of ml+2 in HH2(A)−l is
equal to φ. Moreover, the natural map

HH2(A)−l → A∞S(A), φ 	→ mφ,

is a surjection; i.e. any other A∞-structure is strictly homotopic to mφ.

To prove this proposition, we recall some well-known statements from obstruction
theory. Let m be an A∞-structure on a graded category A. Let us consider the
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A∞-constraint (2.1) of order k + 1. Since m1 = 0, it is the first constraint that
involves mk. Moreover, it can be written in the form

(2.7) dmk = Φk(m3, . . . ,mk−1),

where d is the Hochschild differential and Φk = Φk(m3, . . . ,mk−1) is a quadratic
expression.

Similarly, let m and m′ be two A∞-structures on a graded category A, and let
f = (f̄ = id; f1 = id, f2, f3, . . . ) be a strict homotopy between m and m′. Since
m1 = m′

1 = 0, the order k+1 A∞-constraint (2.2) is the first one that contains fk.
It can be written as

(2.8) dfk = Ψk(f2, . . . , fk−1;m3, . . . ,mk+1;m
′
3, . . . ,m

′
k+1)

= Ψ′
k(f2, . . . , fk−1;m3, . . . ,mk;m

′
3, . . . ,m

′
k) +m′

k+1 −mk+1

where d is the Hochschild differential and Ψk is a polynomial expression. The
following lemma is well known and can be proved by a direct calculation.

Lemma 2.3. In the above notation, let d be the Hochschild differential.

(1) Assume that the first k A∞-constraints (2.1), which depend only on m<k,
hold. Then

dΦk(m3, . . . ,mk−1) = 0.

(2) Let m and m′ be two A∞-structures on a graded category A, and let f be
a strict homotopy between them. Assume that the first k A∞-constraints
(2.2), which depend only on f<k, hold. Then

dΨk(f2, . . . , fk−1;m,m′) = 0.

The following lemma is a direct consequence of the kth A∞-constraint (2.2).

Lemma 2.4. Let m and m′ be two A∞-structures on a graded category A. Let
f : (A,m) → (A,m′) be an A∞-homomorphism with f1 = id and with fi = 0 for
1 < i < k − 1. Then mi = m′

i for i < k and dfk−1 = m′
k −mk.

Proof of Proposition 2.2. We define the desired surjection as follows. Let φ ∈
HH2(A)−l be some class, and let φ̃ ∈ CC2(A)−l be its representative. Consider
the partial A∞-structure (m3, . . . ,ml+2) with

ml+2 = φ̃, m3 = · · · = ml+1 = 0.

The maps m≤l+2 satisfy all the required equations (2.1) which do not involve m>l+2

(there is only one non-trivial such equation, dml+2 = 0). By induction on k, the
equation

dmk = Φk(m3, . . . ,mk−1)

has a solution for each k > l + 2, since we know from part (1) of Lemma 2.3 that
dΦk = 0 and from condition (2.6) that HH3(A)j = 0 when j < −l. This means

that (m3, . . . ,ml+2) lifts to some A∞-structure mφ̃ on A.
Moreover, by condition (2.5) we have HH2(A)j = 0 when j < −l, and by

Lemma 2.3 (2) we know that dΨk = 0. This implies that the equation (2.8) can be
solved for all k > l + 1; i.e. the lift is unique up to strict homotopy. Finally, sim-

ilar considerations and Lemma 2.4 give that the resulting element mφ̃ ∈ A∞S(A)

depends only on φ, not on φ̃.
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Therefore, the map HH2(A)−l → A∞S(A) is well-defined. Now we show that
it is surjective. Let us consider an A∞-structure m′ on A and let us take some

A∞-structure mφ̃ with m3 = · · · = ml+1 = 0 and ml+2 = φ̃ as above. By condition
(2.5), HH2(A)j = 0 for all j ≤ −1 and j �= l. Hence by (2) of Lemma 2.3 we can

construct a strict homotopy f between m′ and mφ̃ if and only if the expression

Ψl+1 from (2.8) is exact. Since Ψl+1 depends linearly on ml+2, we can find φ̃ such
that the class of Ψl+1 in the cohomology group HH2(A)−l vanishes; hence, for this

choice of φ̃, the A∞-structure m′ will be strictly homotopic to mφ̃. This completes
the proof of the proposition. �

3. A classification of A∞-structures

In this section we describe all A∞-structures on the category A(p,q). The main
technical result of this section is the following proposition:

Proposition 3.1. Let A be the category with n ≥ 3 objects defined by (2.3). Then:

(1) For any two elements a, b ∈ k, there exists a Z/2-graded A∞-structure ma,b

on A, compatible with all Z-gradings satisfying (2.4), such that ma,b
3 =

· · · = ma,b
n−1 = 0 and

ma,b
n (ui−1,i, ui−2,i−1, . . . , ui,i+1)(0) = a,

ma,b
n (vi+1,i, vi+2,i+1, . . . , vi,i−1)(0) = b

for any 1 ≤ i ≤ n, where ·(0) means the constant coefficient of an element
of A(Xi, Xi), i.e. the coefficient of idXi

.
(2) Moreover, for any Z-grading A(p,q) where the set (p, q) satisfies (2.4), the

map

k2 → A∞S(A(p,q)), (a, b) 	→ ma,b,

is a bijection, i.e. any A∞-structure m on A(p,q) is strictly homotopic to

ma,b with

a = mn(un,1, un−1,n, . . . , u1,2)(0), b = mn(v2,1, v3,2, . . . , v1,n)(0).(3.1)

The proof of this proposition essentially reduces to the computation of the
Hochschild cohomology of A(p,q).

Lemma 3.2. Let A(p,q) be the Z-graded category with n ≥ 3 objects as in Definition
2.1. Then the bigraded Hochschild cohomology of A(p,q) is

HHd(A(p,q))
j ∼=

⎧⎨⎩k2 for each d ≥ 2 when j =

⌊
d

2

⌋
(2− n),

0 in all other cases when d− j ≥ 2.

Proof. We have a subcomplex

(3.2) CC•
red(A)• ⊂ CC•(A)•,

the so-called reduced Hochschild complex, which consists of cochains that vanish
on any sequence of morphisms containing some identity morphism. It is classically
known that the inclusion (3.2) is a quasi-isomorphism. We will compute Hochschild
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cohomology using the reduced Hochschild complex. For convenience, we will write
just A instead of A(p,q). Let

Ã =
⊕
i,j

A(Xi, Xj).

This is a graded algebra. We have a non-unital graded algebra

Ared := ker
(⊕

i,j

A(Xi, Xj) →
⊕
i

k · idXi

)
.

Let R =
⊕

i
k · idXi

. Then both Ared and Ã are R-R-bimodules, and

CCk+l
red (A)l = Homl

R−R(Ared
⊗Rk, Ã), k ≥ 0.

Denote by Ai ⊂ Ared the subalgebra generated by ui−1,i and vi,i−1. Then we
have an isomorphism

Ared
∼=

⊕
i

Ai

of non-unital graded algebras (because Ai ·Aj = 0 for i �= j).
Consider the bar complex of R–R-bimodules

K•
i = T (sAi) =

⊕
m>0

(sAi)
⊗Rm,

where (sAi)
p = (Ai)

p+1 and the differential is the bar differential

D(sak ⊗ · · · ⊗ sa1) =

k−1∑
i=1

(−1)εisak ⊗ · · · ⊗ sai+1ai ⊗ · · · sa1

with εi =
∑

j≤i deg saj .

Denote by Ai(d) ⊂ Ai, d > 0, the 2-dimensional subspace generated by the two
products of ui−1,i and vi,i−1 of length d; i.e. Ai(2m + 1) is generated by xm

i ui−1,i

and vi,i−1x
m
i while Ai(2m) is generated by xm

i and ymi−1. Consider the subcomplex

K•
i (d) ⊂ K•

i , K•
i (d) =

⊕
d1+···+dl=d,

l>0

sAi(d1)⊗R sAi(d2)⊗R · · · ⊗R sAi(dl).

Lemma 3.3. Ki(1) ∼= sAi(1), and for d > 1 the complex K•
i (d) is acyclic.

Proof. The result is obvious for d = 1. For d ≥ 2, we subdivide the complex
Ki(d) into two parts, according to whether dl = 1 or dl > 1. The first part is
Ki(d − 1) ⊗R sAi(1). We also note that the product map Ai(dl − 1) ⊗R Ai(1) →
Ai(dl) is an isomorphism. Hence the second part of the complex is isomorphic to
Ki(d−1)⊗RAi(1). Using these identifications, we conclude that Ki(d) is isomorphic
to the total complex of the bicomplex Ki(d − 1) ⊗R Ai(1) → Ki(d − 1) ⊗R Ai(1),
where the connecting map is the identity map. It is therefore acyclic. �

Now let
K• = T (sAred) =

⊕
m≥0

(sAred)
⊗Rm.

We have an isomorphism of graded vector spaces

K• = R⊕
⊕
w>0

it 	=it+1

K•
i1 ⊗R · · · ⊗R K•

iw ,
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which is also an isomorphism of complexes because Ai · Aj = 0 for i �= j. Define
subcomplexes

K•(0) = R, K•(d) =
⊕
w>0

d1+···+dw=d,
it 	=it+1

K•
i1(d1)⊗R · · · ⊗R K•

iw(dw) for d ≥ 1.

Consider the full decreasing filtration

CC•(A)•red = L•
1(A)• ⊃ L•

2(A)• ⊃ . . . ,

where L•
r(A)• consists of all cochains vanishing on K•(i) for 0 ≤ i < r.

Denote by Gr•r(A)• = L•
r(A)•/L•

r+1(A)• the associated graded factors of this
filtration. The Hochschild differential d induces a differential

d0 : Gr•r(A)• → Gr•+1
r (A)•.

It is easy to see that d0 coincides with a differential defined by the bar differential
D on K•. Therefore, Lemma 3.3 implies that for r ≥ 1 we have

Hr+j(Gr•r(A)•)j =

Homj
R−R

( ⊕
t∈Z/nZ

k·ut−1,t⊗· · ·⊗ut−r,t−r+1 ⊕
⊕

t∈Z/nZ

k·vt+1,t⊗· · ·⊗vt+r,t+r−1, Ã
)

and

Hi+j(Gr•r(A)•)j = 0 for i �= r.

The first differential

d1 : Hr+j(Gr•r(A)•)j → Hr+j+1(Gr•r+1(A)•)j

in the spectral sequence Er,j
1 = Hr+j(Gr•r(A)•)j is given by the formula

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d1φ(ut−1,t, ut−2,t−1, . . . , ut−r−1,t−r) = ±ut−1,tφ(ut−2,t−1, . . . , ut−r−1,t−r)

±φ(ut−1,t, . . . , ut−r,t−r+1)ut−r−1,t−r,

d1φ(vt+1,t, vt+2,t+1, . . . , vt+r+1,t+r) = ±vt+1,tφ(vt+2,t+1, . . . , vt+r+1,t+r)

±φ(vt+1,t, . . . , vt+r,t+r−1)vt+r+1,t+r.

It is clear that Hr+j(Gr•r(A)•)j �= 0 only for r ≡ 0,±1 mod n and the spectral
sequence (E•,•

1 , d1) consists of the simple complexes

(3.3) 0 → Hmn+j−1(Gr•mn−1(A)•)j → Hmn+j(Gr•mn(A)•)j

→ Hmn+j+1(Gr•mn+1(A)•)j → 0.
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Let m > 0. Now, if j �= m(2 − n), then the complexes (3.3) are acyclic. If
j = m(2− n), then the complex (3.3) has only two non-trivial terms and is

0 → HomR−R

( ⊕
t∈Z/nZ

k · ut−1,t ⊗ · · · ⊗ ut−mn,t−mn+1

⊕
⊕

t∈Z/nZ

k · vt+1,t ⊗ · · · ⊗ vt+mn,t+mn−1, R
)

→ HomR−R

( ⊕
t∈Z/nZ

k · ut−1,t ⊗ · · · ⊗ ut−mn−1,t−mn

⊕
⊕

t∈Z/nZ

k · vt+1,t ⊗ · · · ⊗ vt+mn+1,t+mn,
⊕

t∈Z/nZ

k · ut−1,t ⊕
⊕

t∈Z/nZ

k · vt+1,t

)
→ 0.

Thus, the computation of the cohomology of d1 reduces to an easy computation
of the kernel and the cokernel of this map. Form > 0 we obtain that the cohomology
of d1 is the following:

H2m(E•,•
1 , d1)

m(2−n) ∼= k2,

φa,b(ui−1,i, ui−2,i−1, . . . , ui,i+1) = a · idXi
,

φa,b(vi+1,i, vi+2,i+1, . . . , vi,i−1) = b · idXi
, a, b ∈ k,

H2m+1(E•,•
1 , d1)

m(2−n) ∼= k2,

ψc,d(ui−1,i, ui−2,i−1, . . . , ui−1,i) = δi1 · c · ui−1,i,
ψc,d(vi+1,i, vi+2,i+1, . . . , vi+1,i) = δi1 · d · vi+1,i, c, d ∈ k,

Hi+j(E•,•
1 , d1)

j = 0 in all other cases with i ≥ 2.

It is easy to see that the spectral sequence degenerates at the E•,•
2 term, i.e. all

these classes can be lifted to actual Hochschild cohomology classes. This proves
Lemma 3.2. �

Proof of Proposition 3.1. Part (1) follows directly from Lemma 3.2 and Proposition
2.2.

Lemma 3.2 and Proposition 2.2 also imply that the map (a, b) 	→ ma,b is a
surjection on A∞S(Ap,q). Further, it is straightforward to check that the coefficients
(3.1) are invariant under strict homotopy. This proves part (2) of the proposition.

�

Remark 3.4. Note that autoequivalences of the graded category Ap,q act on the set
of A∞-structures A∞S(Ap,q). In particular, it is easy to see that all A∞-structures
ma,b with a �= 0, b �= 0 yield equivalent A∞-categories, all of them quasi-equivalent
to m1,1. We also have three degenerate A∞-categories defined by m0,1,m1,0, and
m0,0, where the last one mentioned coincides with the category Ap,q itself.

4. The wrapped Fukaya category of C

In this section we study the wrapped Fukaya category of C. Recall that the
wrapped Fukaya category of an exact symplectic manifold (equipped with a Liou-
ville structure) is an A∞-category whose objects are (graded) exact Lagrangian sub-
manifolds which are invariant under the Liouville flow outside of a compact subset.
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Morphisms and compositions are defined by considering Lagrangian Floer intersec-
tion theory perturbed by the flow generated by a Hamiltonian function H which
is quadratic at infinity. Specifically, the wrapped Floer complex Hom(L,L′) =
CW ∗(L,L′) is generated by time 1 trajectories of the Hamiltonian vector field XH

which connect L to L′, or equivalently, by points in φ1
H(L)∩L′; compositions count

solutions to a perturbed Cauchy-Riemann equation. In the specific case of punc-
tured spheres, these notions will be clarified over the course of the discussion; the
reader is referred to [2, Sections 2–4] for a complete definition (see also [6] for a
different construction).

The goal of this section is to prove the following:

Theorem 4.1. The wrapped Fukaya category of C (the complement of n ≥ 3 points
in P1) is strictly generated by n objects L1, . . . , Ln such that⊕

i,j

Hom(Li, Lj) �
⊕
i,j

A(Xi, Xj),

where A is the category defined in (2.3) (with any grading satisfying (2.4)) and the
associated A∞-structure is strictly homotopic to m1,1.

We now make a couple of remarks in order to clarify the meaning of this state-
ment.

Remark 4.2. (1) A given set of objects is usually said to generate a triangulated
category T when the smallest triangulated subcategory of T containing the given
objects and closed under taking direct summands is the whole category T , or equiv-
alently, when every object of T is isomorphic to a direct summand of a complex
built out of the given objects. In the symplectic geometry literature this concept
is sometimes called “split-generation” (cf. e.g. [2]). By contrast, in this paper we
always consider a stronger notion of generation, in which direct summands are not
allowed: namely, we say that T is strictly generated by the given objects if the
minimal triangulated subcategory containing these objects is T .

(2) The A∞-category W(C) is not triangulated; however, it admits a nat-
ural triangulated enlargement, the A∞-category of twisted complexes TwW(C)
(see e.g. Section 3 of [39]). The derived wrapped Fukaya category, appearing
in the statement of Theorem 1.1, is then defined to be the homotopy category
DW(C) = H0(TwW(C)); this is an honest triangulated category. By definition,
we say that W(C) is strictly generated by the objects L1, . . . , Ln if these objects
strictly generate the derived category DW(C), or equivalently, if every object of
W(C) is quasi-isomorphic in TwW(C) to a twisted complex built out of the objects
L1, . . . , Ln and their shifts.

(3) For the examples we consider in this paper, it turns out that the difference
between strict generation and split-generation is not important. Indeed, in Ap-
pendix B we show that the triangulated categories DW(C) and Dsg(W

−1(0)) are
actually idempotent complete.

In order to construct the wrapped Fukaya category W(C), we equip C with a
Liouville structure, i.e. a 1-form λ whose differential is a symplectic form dλ = ω and
whose associated Liouville vector field Z (defined by iZω = λ) is outward pointing
near the punctures; thus (C, λ) has n cylindrical ends modelled on (S1×[1,∞), r dθ).
The objects of W(C) are (graded) exact Lagrangian submanifolds of C which are
invariant under the Liouville flow (i.e. radial) inside each cylindrical end (see [2, 6]
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2

13

. . . n

L2 L1

Ln
. . .

u1,2

v2,1

x1

Figure 1. The generators of W(C)

ii+ 1 φ1
H(Li)

Li

Li−1Li+1

y2
i

yi idLi x2
i

xi

ui,i+1yi
ui,i+1

vi,i−1

vi,i−1xi

Figure 2. Generators of the wrapped Floer complexes

for details; we will use the same setup as in [2]). As a consequence of Theorem 4.1,
the wrapped Fukaya category is independent of the choice of λ; this can be a priori
verified using the fact that, up to adding the differential of a compactly supported
function, any two Liouville structures can be intertwined by a symplectomorphism.

We specifically consider n disjoint oriented properly embedded arcs L1, . . . , Ln ⊂
C, where Li runs from the ith to the i+1st cylindrical end of C (counting mod n as
usual), as shown in Figure 1. To simplify some aspects of the discussion below, we
will assume that L1, . . . , Ln are invariant under the Liouville flow everywhere (not
just at infinity); this can be ensured e.g. by constructing the Liouville structure
starting from two discs (the front and back of Figure 1) and attaching n handles
whose co-cores are the Li.

Recall that the wrapped Floer complex CW ∗(Li, Lj) is generated by time 1
chords of the flow φt

H generated by a Hamiltonian H : C → R which is quadratic
at infinity (i.e. H(r, θ) = r2 in the cylindrical ends), or equivalently by (transverse)
intersection points of φ1

H(Li) ∩ Lj . Without loss of generality we can assume that,
for each 1 ≤ i ≤ n, H|Li

is a Morse function with a unique minimum.

Lemma 4.3. The Floer complex CW ∗(Li, Lj) is naturally isomorphic to the vector
space A(Xi, Xj) defined by (2.3). Moreover, for every choice of Z-grading satisfying
(2.4) there exists a choice of graded lifts of L1, . . . , Ln such that the isomorphism
preserves gradings.

Proof. The intersections between φ1
H(Li) and Li (resp. Li±1) are pictured in Figure

2. The point of φ1
H(Li) ∩ Li which corresponds to the minimum of H|Li

is labeled

by the identity element, while the successive intersections in the ith end are labeled
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by powers of xi, and similarly those in the (i + 1)st end are labeled by powers of
yi. The generators of CW ∗(Li, Li+1) (i.e. points of φ1

H(Li) ∩ Li+1) are labeled by
ui,i+1y

k
i , k = 0, 1, . . . , and similarly the generators of CW ∗(Li, Li−1) are labeled

by vi,i−1x
k
i (see Figure 2).

Recall that a Z-grading on Floer complexes requires the choice of a trivialization
of TC. Denote by di ∈ Z the rotation number of a simple closed curve encircling the
ith puncture of C with respect to the chosen trivialization: by an Euler characteris-
tic argument,

∑
di = n−2. Observing that each rotation around the ith cylindrical

end contributes 2di to the Maslov index, we obtain that deg(xk
i ) = 2kdi, and simi-

larly deg(yki ) = 2kdi+1.
The freedom to choose graded lifts of the Lagrangians Li (compatibly with the

given orientations) means that pi = deg(ui−1,i) can be any odd integer for i =
2, . . . , n; however, considering the n-gon obtained by deforming the front half of
Figure 1, we obtain the relation p1 + · · · + pn = n − 2. Moreover, comparing the
Maslov indices of the various morphisms between Li−1 and Li in the ith end, we
obtain that deg(xk

i ui−1,i) = pi + 2kdi, deg(vi,i−1) = 2di − pi, and deg(vi,i−1x
l
i) =

2di − pi + 2ldi. Setting qi = 2di − pi, this completes the proof. �

It follows immediately from Lemma 4.3 that the Floer differential on CW ∗(Li, Lj)
is identically zero, since the degrees of the generators all have the same parity.

Lemma 4.4. There is a natural isomorphism of algebras⊕
i,j

HW ∗(Li, Lj) �
⊕
i,j

A(Xi, Xj)

where A is the k-linear category defined by (2.3).

Proof. Recall from [2, Section 3.2] that the product on wrapped Floer cohomology
can be defined by counting solutions to a perturbed Cauchy-Riemann equation.
Namely, one considers finite energy maps u : S → C satisfying an equation of the
form

(4.1) (du−XH ⊗ α)0,1 = 0.

Here the domain S is a disc with three strip-like ends, and u is required to map
∂S to the images of the respective Lagrangians under suitable Liouville rescalings
(in our case Li is invariant under the Liouville flow, so ∂S is mapped to Li); XH

is the Hamiltonian vector field generated by H, and α is a closed 1-form on S such
that α|∂S = 0 and which is standard in the strip-like ends (modelled on dt for the
input ends, 2 dt for the output end). (Further perturbations of H and J would be
required to achieve transversality in general but are not necessary in our case.)

Equation (4.1) can be rewritten as a standard holomorphic curve equation (with
a domain-dependent almost-complex structure) by considering

ũ = φτ
H ◦ u : S → C,

where τ : S → [0, 2] is a primitive of α. The product on CW ∗(Lj , Lk)⊗CW ∗(Li, Lj)
is then the usual Floer product

CF ∗(φ1
H(Lj), Lk)⊗ CF ∗(φ2

H(Li), φ
1
H(Lj)) → CF ∗(φ2

H(Li), Lk),

where the right-hand side is identified with CW ∗(Li, Lk) by a rescaling trick [2].
With this understood, since we are interested in rigid holomorphic discs, the

computation of the product structure is simply a matter of identifying all immersed
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iφ2
H(Li)

Li

φ1
H(Li−1)

idLi

x2
ixi

vi,i−1
vi,i−1xi

ui−1,i

Figure 3. A holomorphic triangle contributing to the product

polygonal regions in C with boundaries on φ2
H(Li), φ

1
H(Lj), and Lk and satisfying a

local convexity condition at the corners. (Simultaneous compatibility of the product
structure with all Z-gradings satisfying (2.4) drastically reduces the number of cases
to consider.) Signs are determined as in [39, Section 13], and in our case they all
turn out to be positive for parity reasons.

As an example, Figure 3 shows the triangle which yields the identity ui−1,i ◦
vi,i−1 = xi. (The triangle corresponding to ui−1,i◦(vi,i−1xi) = x2

i is also visible.) �

Lemma 4.5. In W(C) we have

mn(ui−1,i, ui−2,i−1, . . . , ui,i+1) = idLi
and

mn(vi+1,i, vi+2,i+1, . . . , vi,i−1) = (−1)nidLi
.

Proof. Since mn(ui−1,i, . . . , ui,i+1) has degree 0 for all gradings satisfying (2.4),
it must be a scalar multiple of idLi

. By the same argument as in Lemma 4.4,
the calculation reduces to an enumeration of immersed (n + 1)-sided polygonal
regions with boundary on φn

H(Li), φ
n−1
H (Li+1), . . . , φ

1
H(Li−1), and Li, with locally

convex corners at the prescribed intersection points. Recall that uj,j+1 is the first
intersection point between the images of Lj and Lj+1 created by the wrapping flow
inside the (j + 1)st cylindrical end and can also be visualized as a chord from Lj

to Lj+1 as pictured in Figure 1. The only polygonal region which contributes to
mn is therefore the front half of Figure 1 (deformed by the wrapping flow). Since
the orientation of the boundary of the polygon agrees with that of the Lj ’s, its
contribution to the coefficient of idLi

in mn(ui−1,i, ui−2,i−1, . . . , ui,i+1) is +1 (cf.
[39, §13]).

The argument is the same for mn(vi+1,i, . . . , vi,i−1), except the polygon which
contributes now corresponds to the back half of Figure 1. Since the orientation of
the boundary of the polygon differs from that of the Lj ’s and since deg(vj,j−1) = qj
is odd for all j = 1, . . . , n, the coefficient of idLi

is now (−1)n. �

By Proposition 3.1, we conclude that the A∞-structure on
⊕

i,j Hom(Li, Lj) is

strictly homotopic to m1,(−1)n . The sign discrepancy can be corrected by changing

the identification between the two categories: namely, the automorphism of Ã which
maps ui,i+1 to itself, vi,i−1 to −vi,i−1, and xi to −xi intertwines the A∞-structures

m1,(−1)n and m1,1.
The final ingredient needed for Theorem 4.1 is the following generation state-

ment:

Lemma 4.6. W(C) is strictly generated by L1, . . . , Ln−1.
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(1 2)

(2 3)

(n−1 n)

(n−1 n)

(2 3)

(1 2) δ1

δ2

δn−1

δn

δ2n−3

δ2n−2

ε

Figure 4. A simple branched cover π : C → C

Proof. Observe that C can be viewed as an n-fold simple branched covering of C
with 2n − 2 branch points, around which the monodromies are successively (1 2),
(2 3), . . . , (n− 1 n), (n− 1 n), . . . , (2 3), (1 2); see Figure 4. (Since the product
of these transpositions is the identity, the monodromy at infinity is trivial, and it
is easy to check that the n-fold cover we have described is indeed an n-punctured
P1.)

The 2n − 2 thimbles δ1, . . . , δ2n−2 are disjoint properly embedded arcs in C,
projecting to the arcs shown in Figure 4. We claim that they are, respectively,
isotopic to L1, . . . , Ln−1, Ln−1, . . . , L1 in that order. Indeed, for 1 ≤ i ≤ n − 1, δi
and δ2n−1−i both connect the ith and (i+1)st punctures of C. Cutting C open along
all these arcs, we obtain n components, one of them (corresponding to the first sheet
of the covering near −∞) a (2n− 2)-gon bounded successively by δ1, δ2, . . . , δ2n−2,
while the n−1 others (corresponding to sheets 2, . . . , n near −∞) are strips bounded
by δi and δ2n−1−i. From there it is not hard to check that δi and δ2n−1−i are both
isotopic to Li for 1 ≤ i ≤ n− 1.

The result then follows from Theorem A.1, which asserts that the thimbles
δ1, . . . , δ2n−2 strictly generate W(C). �

Note that, by this result, Ln could have been omitted entirely from the discus-
sion. To be more specific, an argument similar to that in Appendix A shows that,
up to a shift, Ln is quasi-isomorphic to the complex

L1
u1,2−→ L2

u2,3−→ · · · un−2,n−1−→ Ln−1.

(Namely, consider a double branched cover as in Appendix A, and denote by γi
the curve obtained by doubling the thimble δi. The thimble ε corresponding to the
dotted arc in Figure 4 is isotopic to Ln. However, by Proposition 18.23 of [39], the
curve obtained by doubling ε is isotopic to the image of γn−1 under the product of
the Dehn twists about γn−2, . . . , γ1 and can be interpreted as an iterated mapping
cone; the claim then follows from the same argument as in the proof of Theorem
A.1.)

We shall encounter this complex on the mirror side (see (6.2)) in the process of
determining the A∞-structure on the category of matrix factorizations. In partic-
ular, we could replace Lemma 4.5 with an argument modeled after that given for
Lemma 6.2.
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5. The Landau-Ginzburg mirror (X(n),W )

In this section we describe mirror Landau-Ginzburg (LG) models W : X(n) → C

for n ≥ 3. These mirrors are toric, and their construction can be justified by a
physics argument due to Hori and Vafa [21]; see also [22, Section 3]. (Mathe-
matically, this construction can be construed as a duality between toric Landau-
Ginzburg models.)

Let us start with P1 minus three points. In this case we can realize our curve
as a line in (C∗)2 viewed as the complement of three lines in P2. The Hori–Vafa
procedure then gives us as mirror LG model a variety X(3) ⊂ C4 defined by the
equation

x1x2x3 = exp(−t)p

with superpotential W = p : X(3) → C, i.e. the mirror LG model (X(3),W ) is
isomorphic to the affine space C3 with the superpotential W = x1x2x3.

In the case n = 2k we can realize C = P1\{2k points} as a curve of bidegree
(k − 1, 1) in the torus (C∗)2 considered as the open orbit of P1 × P1. The raw
output of the Hori–Vafa procedure is a singular variety Y (2k) ⊂ C5 defined by the
equations {

y1 · y4 = yk−1
3 ,

y2 · y5 = y3

with y3 as a superpotential. The variety Y (2k) is a 3-dimensional affine toric variety

with coordinate algebra C[y1, y2, y3y
−1
2 , yk−1

3 y−1
1 ]. A smooth mirror (X(2k),W )

can then be obtained by resolving the singularities of Y (2k). More precisely, Y (2k)
admits toric small resolutions. Any two such resolutions are related to each other
by flops and thus yield LG models which are equivalent, in the sense that they have
equivalent categories of D-branes of type B (see [22]).

If n is odd, we realize our curve as a curve in the Hirzebruch surface F1. All the
calculations are similar.

Now we describe a mirror LG model (X(n),W ) directly. Consider the lattice
N = Z3 and the fan Σn in N with the following maximal cones:

σi,0 := 〈(i, 0, 1), (i, 1, 1), (i+ 1, 0, 1)〉 , 0 ≤ i <

⌊
n− 1

2

⌋
,

σi,1 := 〈(i, 1, 1), (i+ 1, 1, 1), (i+ 1, 0, 1)〉 , 0 ≤ i <

⌊
n− 2

2

⌋
.

Let X(n) := XΣn
be the toric variety corresponding to the fan Σn.

σ0,0 σ1,0

σ0,1v5 v4 v3

v1 v2

H5

H4

H3

H2
H1

Figure 5. The fan Σ and the configuration of divisors Hi (for n = 5)
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We label the one-dimensional cones in Σn as follows:

vi := (i− 1, 1, 1), 1 ≤ i ≤
⌊n
2

⌋
, vi = (n− i, 0, 1),

⌊n
2

⌋
+ 1 ≤ i ≤ n.

For simplicity, we set vi−n := vi =: vi+n. Also, let Hi := Hvi
⊂ X(n) be the toric

divisor corresponding to the ray vi (see Figure 5).
The vector ξ = (0, 0, 1) ∈ M = N∨ is non-negative on each cone of Σn, and

therefore it defines a function

W = Wξ : X(n) → C,

which will be considered as the superpotential. By construction,W−1(0) =
⋃n

i=1Hi.
The LG model (X(n),W ) can be considered as a mirror to C = P1 \ {n points},

by the argument explained above.

Remark 5.1. The construction of the LG model (X(n),W ) can also be motivated
from the perspective of the Strominger-Yau-Zaslow (SYZ) conjecture. Here again
we think of C as a curve in a toric surface; namely we write C = C ∩ (C∗)2, where
C is a rational curve in either P1 × P1 (for n even) or the Hirzebruch surface F1

(for n odd). Then, by the main result of [4], (X(n),W ) is an SYZ mirror to the
blowup of (C∗)2 × C along C × {0}.

6. The category of D-branes of type B in LG model (X(n),W )

The aim of this section is to describe the category of D-branes of type B in the
mirror symmetric LG model (X(n),W ) and to show that it is equivalent to the
derived category of the wrapped Fukaya category W(C) calculated in Section 4.

There are two ways to define the category of D-branes of type B in LG models.
Assuming thatW has a unique critical value at the origin, the first one is to take the
triangulated category of singularities Dsg(X0) of the singular fiber X0 = W−1(0),
which is by definition the Verdier quotient of the bounded derived category of co-
herent sheaves Db(coh(X0)) by the full subcategory of perfect complexes Perf(X0).

The other approach involves matrix factorizations. We can define a triangulated
category of matrix factorizations MF (X,W ) as follows. First define a category
MFnaive(X,W ) whose objects are pairs

T :=
(
T1

t1 ��
T0

t0
��

)
,

where T1, T0 are locally free sheaves of finite rank on X and where t1 and t0 are
morphisms such that both compositions t1 · t0 and t0 · t1 are multiplication by W.
Morphisms in the category MFnaive(X,W ) are morphisms of pairs modulo null-
homotopic morphisms, where a morphism of pairs f : T → S is a pair of morphisms
f1 : T1 → S1 and f0 : T0 → S0 such that f1 · t0 = s0 · f0 and s1 · f1 = f0 · t1, and
a morphism f is null-homotopic if there are two morphisms h0 : T0 → S1 and
h1 : T1 → S0 such that f1 = s0h1 + h0t1 and f0 = h1t0 + s1h0.

The category MFnaive(X,W ) can be endowed with a natural triangulated struc-
ture. Now, we consider the full triangulated subcategory of acyclic objects, namely
the subcategory Ac(X,W ) ⊂ MFnaive(X,W ) which consists of all convolutions of
exact triples of matrix factorizations. We define a triangulated category of matrix
factorizations MF (X,W ) on (X,W ) as the Verdier quotient of MFnaive(X,W ) by
the subcategory of acyclic objects

MF (X,W ) := MFnaive(X,W )/Ac(X,W ).
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This category will also be called triangulated category of D-branes of type B in the
LG model (X,W ). It is proved in [33] that there is an equivalence

(6.1) MF (X,W )
∼−→ Dsg(X0),

where the functor (6.1) is defined by the rule T 	→ Coker(t1) and we can regard
Coker(t1) as a sheaf on X0 due to it being annihilated by W as a sheaf on X.

In this section we use the first approach and work with the triangulated cate-
gory of singularities Dsg(X0). This category has a natural DG (differential graded)
enhancement, which arises as the DG quotient of the natural DG enhancement of
Db(coh(X0)) by the DG subcategory of perfect complexes Perf(X0). This implies
that the triangulated category of singularities Dsg(X0) has a natural minimal A∞-
structure which is quasi-equivalent to the DG enhancement described above. Thus,
in the following discussion we will consider the triangulated category of singularities
Dsg(X0) with this natural A∞-structure.

The singular fiber X0 of W is the union of the toric divisors in X(n). Consider
the structure sheaves Ei := OHi

as objects of the category Dsg(X0).

Theorem 6.1. Let (X(n),W ) be the LG model described above. Then the triangu-
lated category of singularities Dsg(X0) of the singular fiber X0 = W−1(0) is strictly
generated by n objects E1, . . . , En and there is a natural isomorphism of algebras⊕

i,j

HomDsg(X0)(Ei, Ej) ∼=
⊕
i,j

A(Xi, Xj),

where A is the category defined in (2.3).
Moreover, the A∞-structure on

⊕
i,j HomDsg(X0)(Ei, Ej) is strictly homotopic

to m(1,1).

Each object Ei = OHi
, being the cokernel of the morphism OX(n)(−Hi) →

OX(n), is a Cohen-Macaulay sheaf on the fiber X0. Hence by Proposition 1.21 of
[32] we have

HomDsg(X0)(Ei, Ej [N ]) ∼= ExtNX0
(Ei, Ej)

for any N > dimX0 = 2. Since the shift by [2] is isomorphic to the identity, this
allows us to determine morphisms between these objects in Dsg(X0) by calculating
Ext’s between them in the category of coherent sheaves. Hence, if Hi ∩ Hj = ∅,
then Hom•

Dsg(X0)
(Ei, Ej) = 0.

Assume that Hi ∩Hj �= ∅, and denote by Γij the curve that is the intersection
of Hi and Hj . Consider the 2-periodic locally free resolution of OHi

on X0,

{· · · −→ OX0
−→ OX0

(−Hi) −→ OX0
} −→ OHi

−→ 0.

Now the groups ExtNX0
(Ei, Ej) can be calculated as the hypercohomology of the

2-periodic complex

0 −→ OHj

φij−→ OHj
(Hi)

ψij−→ OHj
−→ · · · .

We first consider the case where j = i: then φii = 0, and the morphism ψii is
isomorphic to the canonical map OHi

(−Di) → OHi
, where Di =

⋃
j Γij . Hence the

cokernel of ψii is the structure sheaf ODi
. This implies that Hom•

Dsg(X0)(Ei, Ei)

is concentrated in even degree and the algebra Hom0
Dsg(X0)(Ei, Ei) is isomorphic

to the algebra of regular functions on Di. However, Di consists of either two A1’s
meeting at one point, two A1’s connected by a P1, or two A1’s connected by a chain
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of two P1’s (see Figure 5). In all cases, the algebra of regular functions is isomorphic
to k[xi, yi]/(xiyi).

On the other hand, when j �= i, we must have ψij = 0, and the cokernel of φij

is isomorphic to OΓij
(Hi). When j �∈ {i, i ± 1}, the curve Γij is isomorphic to P1,

and moreover the normal bundles to Γij in Hi and in Hj are both isomorphic to
OP1(−1). Hence OΓij

(Hi) ∼= OP1(−1) and we obtain that Hom•
Dsg(X0)(Ei, Ej) is

trivial.
When j = i + 1, the curve Γij is isomorphic to A1 and Hom•

Dsg(X0)(Ei, Ej)

is concentrated in odd degree. Moreover, HomDsg(X0)(Ei, Ej [1]) is isomorphic to

H0(OΓij
). Therefore, it is generated by a morphism ui,i+1 : Ei → Ei+1[1] as a

right module over End(Ei) and as a left module over End(Ei+1), and there are
isomorphisms

HomDsg(X0)(Ei, Ei+1[1]) ∼= k[xi+1]ui,i+1 = ui,i+1k[yi].

Analogously, if j = i − 1, then there is a morphism vi,i−1 : Ei → Ei−1[1] such
that

HomDsg(X0)(Ei, Ei−1[1]) ∼= k[yi−1]vi,i−1 = vi,i−1k[xi].

It is easy to check that the composition vi+1,iui,i+1 is equal to yi and ui,i−1vi,i−1 =
xi.

Hence, we obtain an isomorphism of superalgebras⊕
i,j

HomDsg(X0)(Ei, Ej) ∼=
⊕
i,j

A(Xi, Xj).

This proves the first part of the theorem.
We claim that the Z/2-graded algebra

⊕
i,j HomDsg(X0)(Ei, Ej) admits natural

lifts to Z-grading, parameterized by vectors ξ ∈ N such that 〈ξ, l〉 = 1 where
l = (0, 0, 1). Indeed, each such element defines an even grading 2ξ on the algebra
C[N ⊗ C∗] of functions on the torus, with the property that deg(W ) = 2. Fixing
trivializations of all line bundles restricted to the torus, we then obtain the desired
grading. It is easy to check that the resulting grading on cohomology satisfies (2.4).

Now let us calculate the induced A∞-structure on the algebra⊕
i,j

HomDsg(X0)(Ei, Ej).

By Proposition 3.1 it suffices to compute the numbers

a = mn(ui−1,i, ui−2,i−1, . . . , ui,i+1)(0), b = mn(vi+1,i, vi+2,i+1, . . . , vi,i−1)(0).

We have a = b by symmetry, and by Remark 3.4 it is sufficient to show that a �= 0.

Lemma 6.2. In the category Dsg(X0) we have

a = mn(ui−1,i, ui−2,i−1, . . . , ui,i+1)(0) �= 0.

Proof. Consider the complex of objects in the category Dsg(X0) :

(6.2) E1[1− n] −→ E2[2− n] −→ · · · −→ En−1[−1],

where the maps are ui,i+1, 1 ≤ i ≤ n− 2, and we place En−1[−1] in degree zero.
The convolution of (6.2) is well-defined up to an isomorphism. It is isomorphic

to En. To see this, introduce the divisor

L :=

�n
2 ∑

k=1

(
k − 1

2

)
Hk +

n∑
k=�n

2 +1

((
n− k

2

)
− 1

)
Hk.
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It is straightforward to check that for i ≥ 0 the restriction of OX0
(L−H1−· · ·−Hi)

to Hi+1 is trivial. Moreover, the morphism ui,i+1 : Ei → Ei+1[1] for i ≥ 1 can be
interpreted as follows. Let

f : Ei
∼= OHi

(L−H1 − · · · −Hi−1) → O⋃
j �=i Hj

(L−H1 − · · · −Hi)[1]

be the morphism corresponding to the extension:

0 → O⋃
j �=i Hj

(L−H1 − · · · −Hi) → OX0
(L−H1 − · · · −Hi−1)

→ OHi
(L−H1 − · · · −Hi−1) → 0.

Then Cone(f) is a perfect complex, so f is invertible in Dsg(X0). Let g be the
projection

O⋃
j �=i Hj

(L−H1 − · · · −Hi)[1] −→ OHi+1
(L−H1 − · · · −Hi)[1].

Then ui,i+1 = gf−1.
By induction, we now see that, for all 1 ≤ k ≤ n−1, the following two properties

hold:

(1) the convolution Ck of E1[1 − n]
u1,2−→ E2[2 − n] −→ · · · uk−1,k−→ Ek[k − n] is

isomorphic to OHk+1∪···∪Hn
(L−H1 − · · · −Hk)[k + 1− n], and

(2) the restriction map from OHk+1∪···∪Hn
(L−H1−· · ·−Hk)[k+1−n] (which

is isomorphic to Ck) to OHk+1
(L−H1−· · ·−Hk)[k+1−n] � Ek+1[k+1−n]

corresponds to the morphism uk,k+1 : Ek[k − n] → Ek+1[k + 1− n].

We conclude that En is isomorphic to the convolution Cn−1 of (6.2) and that the
map from Cn−1 to En induced by un−1,n : En−1[−1] → En is an isomorphism.

Moreover, it is not hard to check that the map from En to Cn−1 induced by
un,1 : En → E1 is also an isomorphism, for instance by using an argument similar
to the above one to show that the convolution of

En[−n]
un,1−→ E1[1− n]

u1,2−→ E2[2− n] −→ · · · un−2,n−1−→ En−1[−1]

is the zero object.
We claim this implies that mn(un−1,n, un−2,n−1, . . . , u1,2, un,1)(0) �= 0. The eas-

iest way to see this is to use the language of twisted complexes (see e.g. Section
3 of [39]). Recall that twisted complexes are a generalization of complexes in the
context of A∞-categories, for which they provide a natural triangulated enlarge-
ment. The philosophy is that, in the A∞-setting, compositions of maps can only be
expected to vanish up to chain homotopies which are explicitly provided as part of
the twisted complex; see Section 3l of [39] for the actual definition. In our case, the
higher compositions of the morphisms within the complex (6.2) are all zero (since
the relevant morphism spaces are zero), so (6.2) defines a twisted complex without
modification; we again denote this twisted complex by Cn−1. Moreover, the maps

un,1 and un−1,n induce morphisms of twisted complexes un,1 ∈ HomTw(En, Cn−1)

and un−1,n ∈ HomTw(Cn−1, En), and by the above argument these are isomor-
phisms. Thus the composition mTw

2 (un−1,n, un,1) is an automorphism of En; hence
the coefficient of idEn

in this composition is non-zero. However, by definition of
the product in the A∞-category of twisted complexes [39, equation (3.20)],

mTw
2 (un−1,n, un,1) = mn(un−1,n, un−2,n−1, . . . , u1,2, un,1).

It follows that a �= 0. �
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The final ingredient needed for Theorem 6.1 is the following generation state-
ment:

Lemma 6.3. The objects E1, . . . , En generate the triangulated category Dsg(X0) in
the strict sense, i.e. the minimal triangulated subcategory of Dsg(X0) that contains
E1, . . . , En coincides with the whole Dsg(X0).

Proof. Clearly, it suffices to show that the sheaves OH1
, . . . ,OHn

generate the cat-
egory Db(coh(X0)). Denote by T ⊂ Db(coh(X0)) the full triangulated subcategory
generated by these objects. As above denote by Γst the intersection Hs ∩Ht.

Since the divisors Hs are precisely the irreducible components of X0, it suffices
to prove that that Db

Hs
(coh(X0)) ⊂ T for all 1 ≤ s ≤ n, where Db

Hs
(coh(X0)) is

the full subcategory consisting of complexes with cohomology supported on Hs. We
introduce a new ordering on the set of components Hs by setting s1 = n, s2 = 1,
s3 = n − 1, s4 = 2, . . . , sn = �n+1

2 �, and we will prove by induction on 1 ≤ i ≤ n
that

(6.3) Db
Hsi

(coh(X0)) ⊂ T .

For i = 1 we have Hs1 = Hn
∼= A2. Therefore, the sheaf OHn

generates
Db(coh(Hs1)) and, hence, it generates Db

Hs1
(coh(X0)). Thus, the subcategory

Db
Hs1

(coh(X0)) is contained in T .

If n = 3, then H1
∼= H2

∼= A2, and we are done. Assume that n > 3, and suppose
that (6.3) is proved for 1 ≤ i < k. By the induction hypothesis, Db

Γsjsk
(coh(X0)) ⊂

T for any j < k. The complement Hsk \ (
⋃

j<k Γsjsk) is isomorphic to either A2 (if

k < n− 1) or an open subset in A2 (if k = n− 1 or n). In any case we obtain that
the sheaf OHsk

together with the subcategories Db
Γsjsk

(coh(X0)) for j < k generate

Db
Hsk

(coh(X0)). In particular, Db
Hsk

(coh(X0)) ⊂ T . This proves (6.3) for i = k,

which implies that T = Db(coh(X0)). �

7. Homological mirror symmetry for cyclic covers

Let d1, d2, and d3 be a triple of integers whose sum is a strictly positive integer
D. To this data, we shall associate a trivialization of the tangent space of a D-
fold cyclic cover C of S2 − {3 points}, as well as a Landau-Ginzburg model on an
orbifold quotient of C3. In order to prove that these are mirror, we shall introduce
a purely algebraic model for a category equivalent to a full generating subcategory
of the Fukaya category on one side and of the category of matrix factorizations on
the other and then extend Theorem 1.1 to the cover.

7.1. A rational grading on A. The algebraic model corresponds to a choice of a
positive integer D and of integers (p1, p2, p3) and (q1, q2, q3) such that

p1 + p2 + p3 = q1 + q2 + q3 = D and pi ≡ qj ≡ D mod 2.

As in Lemma 4.3, we introduce the integers di = pi+qi
2 . We also introduce the

rational numbers p̃i = pi/D, q̃i = qi/D, and d̃i = di/D. We then define a 1
DZ-

graded category A(p̃,q̃) (the notation is analogous to that in Definition 2.1) by
setting

deg(ui−1,i) = p̃i,(7.1)

deg(vi,i−1) = q̃i.(7.2)
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Note that additivity with respect to the multiplicative structure determines the rest
of the gradings

deg(xk
i ) = deg(yki−1) = 2d̃ik,(7.3)

deg(xk
i ui−1,i) = deg(ui−1,iy

k
i−1) = p̃i + 2d̃ik,(7.4)

deg(yki−1vi,i−1) = deg(vi,i−1x
k
i ) = q̃i + 2d̃ik.(7.5)

We will now construct from the 1
DZ-graded category A(p̃,q̃) a Z-graded category

Ã(p̃,q̃) and discuss A∞-structures on it. The process we describe is in fact a specific
instance of a more general construction (see Definition 7.10).

The first step is to consider an enlargement Ã
[D]
(p̃,q̃) of A(p̃,q̃) in which each object is

replaced by D different copies and the groups of morphisms are shifted by multiples
of 1

D . (On the symplectic side, the different objects correspond to the components
of the inverse image of a curve under a D-fold covering map.)

Ob
(
Ã

[D]
(p̃,q̃)

)
= {X̃k

i | 0 ≤ k < D},(7.6)

Ã
[D]
(p̃,q̃)(X̃

k
i , X̃



j ) = A(p̃,q̃)(Xi, Xj)

[
2(�− k)

D

]
.(7.7)

Writing A(1,1) for the Z/2-grading on A in which the generators ui−1,i and vi,i−1

both have odd degree, we have a forgetful functor

Ã
[D]
(p̃,q̃) → A(1,1)

which takes X̃k
i to Xi. This functor is of course not graded, but there is a maximal

subcategory of the source with the property that the restriction becomes a Z/2-
graded functor:

Definition 7.1. The category Ã(p̃,q̃) has as objects those of Ã
[D]
(p̃,q̃) and as morphisms

the subgroup

(7.8) Ã(p̃,q̃)(X̃
k
i , X̃



j ) ⊂ A(p̃,q̃)(Xi, Xj)

[
2(�− k)

D

]
generated by morphisms whose degree is integral and moreover agrees in parity
with the degree of the image in A(1,1).

We shall also need to understand A∞-structures on Ã(p̃,q̃). For this, it will be
convenient to make the following definition.

Definition 7.2. A 1
DZ-graded A∞-category B consists of a Z/2-graded A∞-cate-

gory B, together with 1
DZ-gradings on Homeven(X,Y ) and Homodd(X,Y ) for any

pair of objects X,Y ∈ Ob(B), with respect to which the higher products mn have
degree 2− n.

A 1
DZ-graded DG category is a 1

DZ-graded A∞-category with mn = 0 for n ≥ 3

and with identity of degree zero; finally, a 1
DZ-graded category is a 1

DZ-graded DG
category with zero differential.

We treat both A(p̃,q̃) and Ã
[D]
(p̃,q̃) as 1

DZ-graded categories, with ui−1,i, vi,i−1

being odd morphisms. Note that for a 1
DZ-graded A∞-category B over a field, the

standard construction gives a minimal A∞-structure on the cohomology, i.e. on the
1
DZ-graded category H∗(B).
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The A∞-structures of interest to us arise from the fact that any 1
DZ-graded

A∞-structure on A(p̃,q̃) extends to Ã
[D]
(p̃,q̃), in such a way that Ã(p̃,q̃) is an A∞-

subcategory. The following result classifies 1
DZ-graded A∞-structures on A(p̃,q̃), by

extending Proposition 3.1:

Proposition 7.3. Equation (3.1) gives a bijection between the set of 1
DZ-graded

A∞-structures on A(p̃,q̃), up to 1
DZ-graded strict homotopy, and k2.

Proof. The proof is the same as for Proposition 3.1(2). Namely, Hochschild coho-
mology can be defined for 1

DZ-graded categories in exactly the same manner as in
the Z-graded case, and all the relevant computations from Sections 2 and 3 still
hold in this setting. �

Corollary 7.4. The A∞-structure on Ã(p̃,q̃) induced by a 1
DZ-graded A∞-structure

on A(p̃,q̃) depends, up to strict Z-graded homotopy, only on the constants a and b
appearing in equation (3.1).

Proof. A strict homotopy between two A∞-structures on A(p̃,q̃) extends to one be-

tween the structures on Ã
[D]
(p̃,q̃). Moreover, if the homotopy is graded, the functor

will preserve integral gradings and hence induce a functor on the integral subcate-
gories. �

The next result will allow us some flexibility in proving homological mirror sym-
metry by choosing an appropriate graded representative of each object. The key
observation needed for its proof is that if we allow arbitrary integers in equation
(7.7), then replacing k by k + D corresponds to a homological shift by 2, so that
integrality is preserved as well as parity:

Lemma 7.5. The closure of Ã(p̃,q̃) under the shift functor depends, up to isomor-
phism, only on the triple (d1, d2, d3).

Proof. Let (p′1, p
′
2, p

′
3) and (q′1, q

′
2, q

′
3) be triples of integers such that

p′i + q′i = pi + qi.

The assignment

X̃k
1 	→ X̃k

1 ,

X̃k
2 	→ X̃

k+p2−p′
2

2 ,

X̃k
3 	→ X̃

k+p2−p′
2+p3−p′

3
3

defines a 1
DZ-graded isomorphism, and hence an isomorphism of the corresponding

subcategories of integrally graded morphisms. �

7.2. The wrapped Fukaya category of a cyclic cover. As in the previous
section, we choose integers (d1, d2, d3) whose sum is a strictly positive integer D.
Projecting the Riemann surface

(7.9) C = {(x, y)|yD = xd2(1− x)d3} ⊂ C× C∗

to the x-plane defines a cover of C − {0, 1}, in which the punctures are ordered
(∞, 0, 1).
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Proposition 7.6. The wrapped Fukaya category of C, with the Z-grading deter-
mined by the restriction of the holomorphic 1-form dx

y , is strictly generated by the

components of the inverse image of the real axis. Whenever pi + qi = 2di, there
is a choice of grading on these components so that the resulting subcategory of the
Fukaya category is A∞-equivalent to the structure induced by m1,1 on Ã(p̃,q̃).

Remark 7.7. A description of the Fukaya categories of covers as a semi-direct prod-
uct has previously appeared in the proof of homological mirror symmetry for the
closed genus 2 curve (see [40, Remark 8.1]) and in Sheridan’s work [42, Section 7],
but our implementation will be quite different because we are concerned with recov-
ering integral gradings that do not come from trivializations of the tangent space
of C which are pulled back from the base. Of course, underlying either approach
is the fact that each holomorphic disc in the base lifts uniquely, upon choosing a
basepoint, to a holomorphic disc in the cover.

In order to prove Proposition 7.6, we choose our curves to be

L1 = (−∞, 0),

L2 = (0, 1),

L3 = (1,+∞).

Note that each component of the inverse image of Li in C has constant phase
with respect to the 1-form dx

y . The different components are distinguished by their

phases: those lying over L2 have phases the D-th roots of unity, while the inverse
images of L1 and L3 have phases equal to the solutions of yD = (−1)d2 and yD =
(−1)d3 , respectively. If we fix the exponential map

α 	→ eπ
√
−1α,

then the graded lifts of such components are again distinguished by the correspond-
ing real-valued phase, which lies in di

D + 2
DZ. For each integer 0 ≤ k < D, we fix

graded lifts L̃k
i of Li with real-valued phases

Phase(L̃k
i ) =

⎧⎪⎨⎪⎩
−d2

D + 2k
D if i = 1,

2k
D if i = 2,
d3

D + 2k
D if i = 3.

If we use a Hamiltonian on C which is pulled back from C − {0, 1}, a chord

between L̃k
i and L̃


j is uniquely determined by its projection to C, which is a chord
with endpoints on Li and Lj . Choosing the Hamiltonian as in Section 4, the dif-

ferential in the Floer complex vanishes, so that HW ∗(L̃k
i , L̃



j) is the subgroup of

HW ∗(Li, Lj) generated by those chords admitting a lift with the correct boundary
conditions.

By construction, we have arranged for the chords v2,1 and u2,3 to lift to generators

of HW ∗(L̃0
2, L̃

0
1) and HW ∗(L̃0

2, L̃
0
3), respectively. It is then not hard to see that the

generators of HW ∗(L̃0
2, L̃

0
1) correspond to lifts of chords v2,1x

k
2 whenever D divides

kd2, while the generators of HW ∗(L̃2, L̃3) are lifts of yk2u2,3 where D divides kd3.
Note that if we set q2 = p3 = D, these are precisely the monomials in A(p̃,q̃)(X2, X1)

and A(p̃,q̃)(X2, X3) of odd integer degree, i.e. the generators of Ã(p̃,q̃)(X̃
0
2 , X̃

0
1 ) and

Ã(p̃,q̃)(X̃
0
2 , X̃

0
3 ). Extending this computation from k = � = 0 to the general case
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and using the fact that a holomorphic curve in C− {0, 1} lifts uniquely to C upon
choosing a basepoint, we conclude:

Lemma 7.8. If (p1, p2, p3) = (D − 2d2, 2d2 − D,D) and (q1, q2, q3) = (D −
2d3, D, 2d3−D), then the subcategory of W(C) with objects L̃k

i is quasi-isomorphic

to Ã(p̃,q̃) equipped with the A∞-structure induced by m1,1. �

This result, together with Lemma 7.5, implies the second part of Proposition 7.6,
while the first part follows from Theorem A.1 applied to the composition of the
covering map from C to C−{0, 1} with the Lefschetz fibration used in Lemma 4.6.

7.3. Equivariant Landau-Ginzburg mirror model. Consider C3 equipped with
the diagonal action of G = Z/D with weights 1

D (d1, d2, d3), where di = pi+qi
2 as

above. Let W := z1z2z3 ∈ C[z1, z2, z3]
G. Our LG model is (C3//G,W ). We have

an equivalence

(7.10) DG
sg(W

−1(0)) ∼= MFG(W ).

For each χ ∈ G∗ ∼= Z/D, we have a functor −(χ) on Dsg(W
−1(0)). For each

0 ≤ k < D, denote by χk ∈ G∗ the character corresponding to the image of k in
Z/D. Take the objects

Ek
i := OHi

(χk) ∈ DG
sg(W

−1(0)), 1 ≤ i ≤ 3, 0 ≤ k < D,

where Hi = {zi = 0} ⊂ W−1(0). Clearly, they generate (strictly) the category
DG

sg(W
−1(0)). Now we would like to prove that there is an equivalence DW(C) ∼=

DG
sg(W

−1(0)), such that the objects L̃k
i correspond to Ek

i . To do that, we will deal

with 1
DZ-gradings on matrix factorizations.

Put deg(zi) := 2d̃i = 2di

D . Then the algebra R = C[z1, z2, z3] becomes 1
DZ-

graded, and deg(W ) = 2. Define a 1
DZ-graded DG category MF

1
DZ(W ) of 1

DZ-
graded matrix factorizations as follows.

An object of this category is a pair of free finitely generated 1
DZ-graded R-

modules T = (T1, T0), together with homogeneous morphisms t1 : T1 → T0, t0 :
T0 → T1 of degree 1, such that t1t0 = W · idT0

, t0t1 = W · idT1
.

Further, for two objects T , S, the 2-periodic complex of morphisms Hom(T , S)
is defined as usual. Composition is also the usual one. Finally, the 1

DZ-grading on

Homeven(T , S) and Homodd(T , S) comes from the 1
DZ-gradings on T1, T0, S1, S0.

It is straightforward to check that we indeed get a 1
DZ-graded DG category.

Now we consider three particular matrix factorizations T 1, T 2, T 3 ∈ MF
1
DZ(W )

as follows:

T 1 = {R z2z3−→ R[1− 2d̃1]
z1−→ R}

and analogously for T 2, T 3. Denote by Cd1,d2,d3
⊂ MF

1
DZ(W ) the full 1

DZ-graded

DG subcategory with objects T 1, T 2, T 3. Then the 1
DZ-graded cohomological cat-

egory H∗(Cd1,d2,d3
) is equipped with a natural minimal A∞-structure (defined up

to graded strict homotopy).
For convenience, set T i+3 := T i, zi+3 := zi, and di+3 := di.

Proposition 7.9. (1) There is a natural equivalence of 1
DZ-graded categories

A(p̃,q̃)
∼= H∗(Cd1,d2,d3

),

where pi = 2di + 2di+1 −D and qi = 2di−2 + 2di−1 −D.
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(2) Under the above equivalence, the A∞-structure on H∗(Cd1,d2,d3
) is homotopic

to m1,1.

Proof. (1) For each i = 1, 2, 3, consider the odd closed morphism ũi−1,i : T i−1 → T i

given by the pair of morphisms

R
zi+1−→ R[1− 2d̃i], R[1− 2d̃i−1]

−1−→ R.

The sign appears because the morphism is odd. Clearly, deg(ũi−1,i) = pi

D = p̃i.
Similarly, consider the odd morphism ṽi,i−1 : T i → T i−1 given by the pair of
morphisms

R
zi−2−→ R[1− 2d̃i−1], R[1− 2d̃i]

−1−→ R.

It is easy to see that deg(ṽi,i−1) = q̃i. Moreover, the compositions ũi+1,iũi−1,i and
ṽi,i−1ṽi+1,i are homotopic to zero. Hence, we have a functor

A(p̃,q̃) −→ H∗(Cd1,d2,d3
)

of 1
DZ-graded categories. It is easily checked to be an equivalence.

(2) The non-vanishing of the constant terms of the expressionsm3(ũ3,1, ũ2,3, ũ1,2)
and m3(ṽ2,1, ṽ3,2, ṽ1,3) follows from the results of Section 6. Indeed these constant
terms do not depend on gradings, and they were shown not to vanish for integer
gradings. Hence, the statement follows from Proposition 7.3. �

Definition 7.10. For a 1
DZ-graded A∞-category B, denote by B̃ the Z-graded

A∞-category whose objects are pairs (X, k), where X ∈ Ob(B) and 0 ≤ k < D and
where morphisms are defined by the formulas

Hom2i
B̃
((X, k), (Y, l)) = Hom2i+ 2(l−k)

D ,even(X,Y ),

Hom2i−1

B̃
((X, k), (Y, l)) = Hom2i−1+ 2(l−k)

D ,odd(X,Y ).

The higher products are induced by those of B.

(Compare with the construction in Section 7.1.)

It is clear that the assignment B 	→ B̃ defines a functor from 1
DZ-graded A∞-

categories and A∞-morphisms to usual Z-gradedA∞-categories and A∞-morphisms.

Corollary 7.11. With the same notation, the DG category ˜Cd1,d2,d3
is quasi-

equivalent to the A∞-category (Ã(p̃,q̃), m̃
1,1), where the A∞-structure m̃1,1 is induced

by m1,1.

Now write the matrix factorizations in MFG(W ) corresponding to the above
generators Ek

i ∈ DG
sg(W

−1(0)) :

T̃
k

i = {R(χk)
zi+1zi+2−→ R(χk−di

)
zi−→ R(χk)}.

Then it is straightforward to see that we have a fully faithful functor of Z/2-
graded DG categories

˜Cd1,d2,d3
−→ MFG(W ), (T i, k) 	→ T̃

k

i .

Since the collection of sheaves {OHi
(χk)}D−1

k=0 strongly generates the category
of equivariant coherent sheaves on W−1(0) supported on the component Hi, we
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obtain the following result using the same argument as the proof of Lemma 6.3:

Proposition 7.12. The triangulated category DG
sg(W

−1(0)) is strictly generated

by the objects Ek
i introduced above. The resulting Z/2-graded DG subcategory of

MFG(W ) is quasi-equivalent to the (Z/2-graded) A∞-category Ã(p̃,q̃).

Taking into account the results of the previous subsection, we have proved the
following theorem.

Theorem 7.13. The triangulated categories DW(C) and DG
sg(W

−1(0)) are equiv-
alent.

Proof. This follows from Proposition 7.12, Proposition 7.6, and Lemma 7.5. �

Appendix A. A generation result for the wrapped Fukaya category

Throughout this section, we shall consider π : Σ → D2, a Lefschetz fibration on
a compact Riemann surface with boundary, i.e. a simple branched covering of the
disc. The inverse image of an arc starting at a critical value and ending at 1 ∈ D2

is called a Lefschetz thimble, and the collection of thimbles obtained by choosing a
collection of arcs which do not intersect in the interior, one for each critical point,
is called a basis of thimbles.

Theorem A.1. Any basis of thimbles generates (in the strict sense) the wrapped
Fukaya category of Σ for all coefficient rings.

Note that this result is stronger than the split-generation statement that might
be expected by applying the results of [2]. We shall prove it by embedding Σ inside
a larger Riemann surface where the Lagrangians we consider extend to circles.
Then, following the strategy developed by Seidel in [39], we apply the long exact
sequence for a Dehn twist to derive a generation statement in the Fukaya category
of compact Lagrangians. Finally, we shall use the existence of a restriction functor
constructed in [6] to conclude the desired result. We shall omit discussions of signs
and gradings (and the corresponding geometric choices) which essentially play no
role in our arguments.

Let us therefore start by choosing a Liouville structure on Σ, i.e. a 1-form λ whose
differential is symplectic and whose associated Liouville flow is outward pointing at
the boundary.

In addition to mere exactness, the construction of a restriction functor will re-
quire us to consider the following technical condition on a curve α ∈ Σ:

(A.1) λ|α has a primitive function which vanishes on the boundary.

Choosing a basis of thimbles, we replace λ (adding the differential of a function)
so that this condition holds for each element of the basis. For more general curves,
we have:

Lemma A.2. Every exact curve in Σ is equivalent, in the wrapped Fukaya category,
to a curve satisfying condition (A.1).

Proof. The quasi-isomorphism class of a curve is invariant under Hamiltonian iso-
topies in the completion of Σ to a surface of infinite area. We leave the (easier)
non-separating case to the reader and assume we are given a curve α0 whose union
with a subset of ∂Σ (consisting of an interval together with some components)
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bounds a submanifold Σ0. Stokes’s theorem implies that the difference between the
values of a primitive at the two endpoints of α0 equals∫

Σ0

ω −
∫
Σ0∩∂Σ

λ

where each component of Σ0 ∩ ∂Σ is given the orientation induced as a subset of
the boundary of Σ. Note that the integral over the boundary is strictly greater
than 0 and smaller than the area of Σ. In particular, we may isotope α0, through
embedded curves which have the same boundary, to a curve α1 bounding a surface
Σ1 of area exactly

∫
Σ0∩∂Σ

λ. Stokes’s theorem now implies that any primitive on α1

must have equal values at the endpoints. The isotopy between α0 and α1 can be
made Hamiltonian after enlarging Σ by attaching infinite cylinders to its boundary
components. �

To prove that thimbles generate the wrapped Fukaya category, it suffices there-
fore to prove that an arbitrary curve γ, satisfying condition (A.1), is equivalent to
an iterated cone built from thimbles. We consider the Riemann surface Σγ obtained
by attaching a 1-handle along the boundary of γ. Weinstein’s theory of handle at-
tachment gives a Liouville form on Σγ for which the inclusion of Σ is a subdomain
and such that the union of γ with the core of the new handle is an exact Lagrangian
circle which we shall denote γ0. In addition, we may construct a Lefschetz fibration

πγ : Σγ → D2(1 + ε)

over the disc of radius 1 + ε, whose restriction to Σ agrees with π and which has
exactly one critical point outside the unit disc.

Let us choose a basis of thimbles for πγ extending the previous basis and such
that the additional arc does not enter the unit disc. We then consider a double cover
of Σγ denoted Σ̃γ , which is branched at the inverse image of 1+ ε. The thimbles of

πγ double to exact Lagrangian circles (γ1, . . . , γd, γd+1) in Σ̃γ , with the convention
that γd+1 is the double of the thimble coming from the new critical point. Since

γ0 does not link the branching point, its inverse image in Σ̃γ consists of a pair of
curves which we shall denote γ±.

The following result is essentially Lemma 18.15 of [39]. Its proof relies on the
correspondence between algebraic and geometric Dehn twists and the fact that
applying a series of Dehn twists about the curves γ1, . . . , γd+1 maps γ+ to a curve
isotopic to γ−.

Lemma A.3. The direct sum of γ+ with an object geometrically supported on γ−
lies in the category generated by (γ1, . . . , γd, γd+1). �

Lemma 18.15 of [39] in fact describes the precise object supported on γ− which
appears in this lemma; as this is inconsequential for our intended use, we avail our-
selves of the option of omitting any discussion of signs and gradings. We complete
this appendix with the proof of its main result:

Proof of Theorem A.1. The inverse image of Σ in Σ̃γ consists of two components;
by fixing the one including γ+, we obtain an inclusion

ι : Σ → Σ̃γ ,

which is again an inclusion of Liouville subdomains for an appropriate choice of
Liouville form on the double branched cover.
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By construction, γ− and γd+1 are disjoint from ι(Σ), while γ+ intersects ι(Σ)
in γ and (γ1, . . . , γd) in the originally chosen basis of vanishing cycles. Since, by
construction, condition (A.1) holds for these curves, we may apply the restriction
functor defined in Sections 5.1 and 5.2 of [6]. This A∞-functor, defined on the

subcategory of the Fukaya category of Σ̃γ consisting of objects supported on one
of the curves (γ+, γ−, γ1, . . . , γd), has target the wrapped Fukaya category of ι(Σ)
and takes a curve to its intersection with the subdomain. By Lemma A.3, the
direct sum of γ+ and an object supported on γ− lies in the category generated by
(γ1, . . . , γd, γd+1). Since γ− is disjoint from ι(Σ), the image of this direct sum under
restriction is γ, so we conclude, as desired, that γ lies in the category generated by
thimbles. �

Appendix B. Idempotent completion

The purpose of this appendix is to prove that the triangulated category of sin-
gularities Dsg(X0) of the singular fiber X0 = W−1(0) of the LG model (X(n),W )
is idempotent complete. This implies that the derived wrapped Fukaya category
DW(C) is also idempotent complete.

A full triangulated subcategory N of a triangulated category T is called dense
in T if each object of T is a direct summand of an object isomorphic to an object
in N . An amazing theorem of R. Thomason [45, Th. 2.1] asserts that there is
a one-to-one correspondence between strictly full dense triangulated subcategories
N in T and subgroups H of the Grothendieck group K0(T ). Moreover, we know
that under this correspondence N goes to the image of K0(N ) in K0(T ) and to
H we attach the full subcategory NH whose objects are those N in T such that
[N ] ∈ H ⊂ K0(T ). Actually, in this situation the map from K0(N ) to K0(T ) is an
inclusion.

Let us consider the triangulated category of singularities Dsg(Z) for some scheme
Z. The Grothendieck group K0(Dsg(Z)) is equal to the cokernel of the map
K0(Perf(Z)) → K0(D

b(cohZ)).
On the other hand, by [36, Th. 9] (see also [25, Th. 5.1]) there is a long exact

sequence for K-groups

· · · → Ki(Perf(Z)) −→ Ki(D
b(cohZ)) −→ Ki(Dsg(Z)) −→ Ki−1(Perf(Z)) → · · ·

where Dsg(Z) is the idempotent closure (or Karoubian completion) of Dsg(Z).
Using the fact that K−1 is trivial for a small abelian category ([36, Th. 6]), we

obtain a short exact sequence

0 −→ K0(Dsg(Z)) −→ K0(Dsg(Z)) −→ K−1(Perf(Z)) −→ 0.

This sequence shows that K−1(Perf(Z)) is a measure of the difference between

Dsg(Z) and its idempotent completion Dsg(Z).
To summarize all these results, we obtain the following proposition:

Proposition B.1. The triangulated category of singularities Dsg(Z) is idempotent
complete if and only if K−1(Perf(Z)) = 0.

Also recall that the negative K-groups are defined by induction from the follow-
ing exact sequences

0 → Ki(Perf(Z)) → Ki(Perf(Z[t]))⊕Ki(Perf(Z[t−1])) → Ki(Perf(Z[t, t−1]))

→ Ki−1(Perf(Z)) → 0.
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In particular, the groupK−1(Perf(Z)) is isomorphic to the cokernel of the canon-
ical map K0(Perf(Z[t]))⊕K0(Perf(Z[t−1])) → K0(Perf(Z[t, t−1])).

Now we consider the specific case Z = X0, where X0 is the singular fiber of
W : X(n) → C defined in Section 5, i.e. the union of the toric divisors of X(n).

Proposition B.2. Let X0 be as above. Then K−1(Perf(X0)) = 0.

Proof. Let us denote by Γ ⊂ X0 the one-dimensional subscheme consisting of the
singularities of X0, i.e. the union of all the toric curves in X(n). Denote by π :
X ′

0 → X0 the normalization of X0 and set Γ ′ = Γ ×X0
X ′

0. By [47, Th. 3.1] there
is a long exact sequence of K-groups which in this case gives the following exact
sequence:

K0(X
′
0)⊕K0(Γ ) −→ K0(Γ

′) −→ K−1(X0) −→ K−1(X
′
0)⊕K−1(Γ ),

where all K-groups are K-groups of perfect complexes. Since the normalization X ′
0

is the disjoint union of smooth toric surfaces, we have K−1(X
′
0) = 0. Considering

components of the normalization X ′
0, it is also easy to deduce that the restriction

map K0(X
′
0) → K0(Γ

′) is surjective. Thus it is sufficient to show that K−1(Γ ) is
trivial.

To any Noetherian curve C we can associate a bipartite graph γ defined as
follows. The graph γ has one vertex for each singular point s of C and one vertex
for each component of the normalization p : C ′ → C. For each point of p−1(s) there
is an edge connecting the corresponding component of C ′ with the singular point s
of C.

By [47, Lemma 2.3] there is an isomorphism K−1(C) = Zλ, where λ is the
number of loops in the bipartite graph γ associated to C. It is easy to see that in
our case the bipartite graph of Γ does not have any loop. Thus K−1(Γ ) = 0, and
K−1(X0) = 0 too. �
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