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1. Introduction

The main result of this paper is the following theorem (see Theorem 5.1). For
definitions see Section 2.2.

Theorem 1.1. Every finitely generated group with combinatorially aspherical re-
cursive presentation complex embeds into a group with finite combinatorially aspher-
ical presentation complex.

Using Davis’s construction [8] (see also [9, Chapter 11]), this allows one to create
closed aspherical manifolds of dimension 4 and higher with some previously un-
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2 MARK SAPIR

known “extreme” properties.1 For example, by Gromov [12] (for more details see
Arzhantseva and Delzant [1] and for a completely self-contained proof see Coulon
[7]), there exists a finitely generated group with recursive combinatorially aspherical
presentation whose Cayley graph coarsely contains an expander. Hence Theorem
1.1 implies

Corollary 1.2. There exist closed aspherical manifolds of dimension 4 and higher
whose fundamental groups coarsely contain expanders.

The fundamental groups of the manifolds from Corollary 1.2 are not coarsely
embeddable into a Hilbert space [12], do not satisfy G. Yu’s property A [32], and
are counterexamples to the Baum-Connes conjecture with coefficients (see Higson,
Lafforgue, Skandalis [16]). They also have infinite asymptotic dimension. This
solves a problem, formulated first by G. Yu in [31], asking whether the fundamen-
tal group of a closed aspherical manifold can have infinite asymptotic dimension. A
weaker problem of whether the asymptotic dimension of a closed aspherical man-
ifold can exceed its (ordinary) dimension was mentioned by Gromov in [11, p. 33]
and remained open until now. Note that Dranishnikov’s problem of whether the
asymptotic dimension of an aspherical n-manifold is always n or infinity is still open
(see [10, Problem 3.4]). It seems that Gromov’s random groups and our Theorem
1.1 cannot give an example of where the dimensions are different while both are
finite, in view of the recent paper by Willett [30].2

As another corollary one can deduce that

Corollary 1.3. A torsion-free Tarski monster (that is, a finitely generated group
all of whose proper subgroups are infinite cyclic; see Ol′shanskĭı [20]) embeds into
the fundamental group of a closed aspherical manifold.

Indeed, by [20], the torsion-free Tarski monsters constructed by Ol′shanskĭı have
recursive combinatorially aspherical presentations; it remains to apply Theorem 1.1
and [8]. More generally, every lacunary hyperbolic group given by a recursive graded
small cancelation presentation (see [22]) embeds into the fundamental group of a
closed aspherical manifold.

Note the fact that any recursively presented group that embeds into a finitely
presented group is the celebrated Higman embedding theorem [15], which is one
of the main results in algorithmic group theory. There exist at least ten versions
of Higman’s embedding construction preserving various properties of groups, from
relatively easy constructions to very complicated (see [25], [3], [2], [23], [26], [27]
and references therein). But all the previous versions could not produce finitely
presented groups with finite K(., 1) if the original group was not finitely presented.
The reason is also basically common to all these constructions and can be roughly
described as follows. Let G be a finitely presented group containing a copy of a
recursively presented group Γ and constructed using one of the existing proofs of
the Higman embedding theorem. Then in most known constructions there exists
1 �= g ∈ G which centralizes Γ. Consider two copies Δ1,Δ2 of a van Kampen
diagram over the presentation of G with boundaries labeled by a relation r of Γ
(such diagrams must exist by the van Kampen lemma since r = 1 in G). Consider

1As explained in [9, Chapter 11], in dimension 5 and higher, one can assume that the aspherical
manifold we construct is smooth. This was communicated to the author by I. Belegradek.

2For a recent survey about aspherical manifolds see Lück [17]; for constructions of aspherical
manifolds with other “exotic” properties see Davis [9].
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Figure 1

the van Kampen diagram Δ3 for the commutativity relation gr = rg obtained by
gluing together diagrams for ga = ag for every letter a in r (see Figure 1). It
has the form of a rectangle with sides labeled by r, g, r−1, g−1. Glue Δ1,Δ2,Δ3

together to form a spherical van Kampen diagram over the presentation of G. That
spherical diagram is not combinatorially homotopic to a trivial diagram. Moreover
it is basically clear that if the defining relations of Γ are independent enough (say,
satisfy some form of small cancelation as in many interesting cases), then these
spherical diagrams cannot be “generated” by finitely many spherical diagrams over
the presentation of G. Hence the relation module [18] of the group G is infinitely
generated. A similar problem arises even if we assume only gΓg−1 ⊂ Γ. More
complicated constructions such as the one from [23] have the same problem but it
is hidden deeper.

The main difficulty that we had to overcome in this paper was to avoid this
type of “trivial” spherical diagrams. In our construction, we are using S-machines
(which can be viewed as multiple HNN-extensions of free groups) first introduced in
[29] and used for some versions of Higman embedding in [2], [23] and other papers.
The finitely presented group in this paper is built from two (different) S-machines
and several hyperbolic and close to hyperbolic groups that “glue” these S-machines
together. One of the main tools of the proof is the congruence extension property
of certain subgroups of hyperbolic groups first established by Ol′shanskĭı in [21].

One can view this paper as giving examples of finitely presented groups with
extreme properties. There are now many examples of finitely generated extreme
groups, sometimes called monsters, but finitely presented monsters are much more
rare. There are some objective reasons for this. For example a hyperbolic group
version of the Cartan-Hadamard theorem proved by Gromov (see the Appendix of
[22] by Kapovich and Kleiner) shows that a lacunary hyperbolic finitely presented
group is hyperbolic and so it cannot be torsion, have few subgroups, or be of
intermediate growth, etc. Since many methods of creating extreme groups are
based on lacunar hyperbolicity [20], [22], these methods cannot produce finitely
presented groups.

2. Preliminaries

2.1. Van Kampen diagrams. The main tool in this paper is van Kampen di-
agrams ([18], [20]). For the benefit of the reader, in this section, we present an
overview of van Kampen diagrams and show how van Kampen diagrams can be
used.

2.1.1. The definition. Let G be a finitely presented group given by a finite set of
generators X and a finite set of relators R, let φ be a homomorphism from the free
group F (X) onto G, and let N be the kernel of this homomorphism.

Since N is generated by R as a normal subgroup, a reduced group word W from
F (X) is in N if and only if W can be represented in the free group as a product of
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conjugates of elements of R and their inverses:

(2.1) W =
m∏
i=1

sir
±1
i s−1

i

where si ∈ F (X), ri ∈ R.
For every representation (2.1), we can draw a bouquet of “lollipops” which is a

planar labeled graph. Each “lollipop” corresponds to one of the factors siris
−1
i , it

has a stem, a path labeled by si (i.e. the stem is subdivided into edges labeled by
the letters of si), and a candy, a cycle path labeled by ri (see Figure 2).

a
b

c

si

d
e
f

ri

s1

s2
sm

r1

r2
rm

Figure 2. Using lollipops to build a van Kampen diagram.

Going counterclockwise around the “lollipop” starting and ending at the tip of
the stem, we read siris

−1
i . Thus going counterclockwise around the diagram which

is the bouquet of “lollipops”, we read the word which is the right-hand side of (2.1).
In order to make the word W from this word, we need to reduce the boundary of

the bouquet of “lollipops” (the boundary is traced counterclockwise): every time
we see a pair of consecutive edges on the boundary of the diagram, which have the
same label and the same initial or terminal vertex (see Figure 3), we identify these
two edges (if the edges have both vertices in common, we identify the two edges
and remove the whole subgraph bounded by them on the plane). This amounts to
removing subwords xx−1 and x−1x from the right-hand side of (2.1). The resulting
picture is a van Kampen diagram for W over the presentation 〈X | R〉, that is, a
planar graph with edges labeled by elements ofX, the boundary of each cell (i.e. the
closure of a bounded connected components of the plane minus the graph) labeled
by words from R±1, and the boundary of the whole graph (i.e. the boundary of
the infinite component of the plane minus the graph) is labeled by W (see [18] for
a slightly different definition and [20] for another one).
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a
a a

=⇒

Figure 3. Reducing the boundary.

Figure 4 shows what a typical van Kampen diagram may look like. One can see
that the cells may be of different sizes and shapes, a cell can touch itself, etc. It is
also important that a diagram itself may not be an embedded disc: several pieces
as in Figure 4 can be connected by paths to form a tree of discs (as the bouquet of
lollipops in Figure 2).

Figure 4. A van Kampen diagram without labels.

The main (but simple) fact about van Kampen diagrams is the following

Lemma 2.1 (Van Kampen lemma [18], [20], [28]). A reduced group word W over
the alphabet X is equal to 1 in G if and only if there exists a van Kampen diagram
over the presentation of G with boundary label W .

2.1.2. 0-cells. Following Ol′shanskĭı [20], we are going to use 0-cells. A 0-edge is an
edge labeled by 1 (the identity element of the group). A 0-relation is a relation of
one of two forms 1k = 1 and 1ka1la−11m = 1, k, l,m ≥ 0. A cell corresponding to
a 0-relation is called a 0-cell ; see Figure 5.

A 0-cell is a cell corresponding to a 0-relation. Clearly, adding 0-relations to a
presentation does not change the group. 0-cells allow us to assume that every cell
in a diagram and the diagram itself are embedded discs. For example, Figures 6
and 7 show what to do when a cell touches itself and when a diagram consists of
two disc diagrams connected by an arc.

As noted in [20, Chapter 4], using 0-cells, one can transform every van Kampen
diagram Δ into a diagram Δ′ over the “extended presentation” (including the 0-
relations) with boundary label freely equal to the label of ∂(Δ) and such that

• no two non-0-edges e �= f±1 share a vertex,
• no two different non-0-cells share a boundary vertex.
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Figure 5. 0-cells.

a1 a1

a2 a2
a3 a3

a4 a4

a5 a5

a6 a6

a7 a7

1

1

1

1

1

1

1 1
⇒

a8 a8

a8

Figure 6. Turning a cell into an embedded disc.

a ⇒
a

a
1 1

u v u v

Figure 7. Turning a diagram into an embedded disc.

Making a surgery on a van Kampen diagram, say, replacing a subdiagram with
another subdiagram (see below) with the same boundary, we usually first insert
0-edges and 0-cells, then do the surgery, and then remove 0-cells and 0-edges. This
way we can always deal with embedded discs.

2.1.3. Combinatorial homotopy of van Kampen diagrams.

Definition 2.2. A (connected) planar subcomplex without cut-points Δ′ of a van
Kampen diagram Δ will be called a holey M -subdiagram. If Δ does not have holes
(i.e. is homeomorphic to a disc), it will be called a disc subdiagram or simply a
subdiagram.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Recall that a combinatorial homotopy can insert and delete subdiagrams consist-
ing of two mirror image cells that share an edge and also can make diamond moves
[6] as shown on Figure 8 (without 0-cells, diamond moves can be more complicated
because the edges involved can be loops, can have two common endpoints, etc.; see
[19, p. 17]).

a

a

a a
π1

π2

π4 π1

π3

π4

π3 π2

a

a

a

a

π1

π2π3

π4

Figure 8. Diamond move: cut along edges labeled by a, then
fold; π1, π2, π3, π4 are cells.

A van Kampen diagram is called reduced if it does not have a cancelable pair of
cells.

If Δ is a van Kampen diagram, then Δ−1 is the diagram with the same boundary
label as Δ such that if we glue Δ and Δ−1 along the boundary, then the resulting
van Kampen diagram on a sphere reduces to a diagram without cells.

If Γ is an annular diagram obtained by removing a subdiagram Δ′ from a van
Kampen diagram Δ, then Γ−1 is the diagram which has the same labels of the
outer and inner boundaries and such that if we glue Γ−1 and Γ along the external
boundary component and then reduce the resulting diagram, we get a diagram
without cells.

2.1.4. The standard surgery on van Kampen diagrams. We shall use the following
surgery on van Kampen diagrams. Let Δ1, Δ2 be van Kampen diagrams over a
group presentation 〈X | R〉. Suppose that there exists a subdiagram Δ′ of Δ which
is also a subdiagram of Δ2 (see Figure 9). Let Γ be the complement of Δ′ in Δ2.
Then Γ is an annular diagram. The standard surgery on Δ1 is the following: cut Δ1

along the boundary of Δ′. In the resulting hole insert Γ and its inverse Γ−1 so that
if we cancel cells from Γ and Γ−1, we get Δ1 back. The new (non-reduced) diagram
is the result of the surgery. Note that it contains Δ2 and Γ−1 as subdiagrams but
has the same boundary label as Δ1 (see Figure 10).

2.1.5. Bands and annuli. The next definition of a band in a diagram is crucial for
our paper.

Let 〈X | R〉 be a group presentation.
Let S be a subset of X . An S-band B is a sequence of cells π1, . . . , πn in a van

Kampen diagram such that

• each two consecutive cells in this sequence have a common edge labeled by
a letter from S,

• each cell πi, i = 1, . . . , n, has exactly two S-edges (i.e. edges labeled by a
letter from S) having opposite orientations.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Δ1
Δ2

Δ′

Δ′

Figure 9. Two van Kampen diagrams with a common subdiagram.

Δ1

Δ2

Δ′

Γ−1

Figure 10. The result of a standard surgery. The new diagram
has the same boundary label as Δ1 and contains Δ2 inside.

Figure 11 illustrates this concept. In this figure edges e, e1, . . . , en−1, f are S-
edges; the lines l(πi, ei), l(πi, ei−1) connect fixed points in the cells with fixed points
of the corresponding edges.

The broken line formed by the lines l(πi, ei), l(πi, ei−1) connecting points inside
neighboring cells is called the median of the band B. The S-edges e and f are called
the start and end edges of the band. The boundary of the subdiagram

⋃
πi has the

form epf−1q−1. The paths p, q are called the sides of the band.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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e
π1 π2 πn

f
e2 en−1S

. . .

. . .

l(π1, e1) l(π2, e1) l(π2, e2) l(πn−1, en−1) l(πn, en−1)

q2

q1

e1
...

l(π1, e) l(πn, f)

Figure 11

A band π1, . . . , πt is called reduced if πi+1 is not a mirror image of πi, i =
1, . . . , t− 1 (otherwise cells πi and πi+1 cancel and there exists a diagram with the
same boundary label as

⋃
i πi and containing fewer cells).

We say that two bands intersect if their medians intersect. We say that a band
is an annulus if its median is a closed curve (see Figure 12(a)).

π1 = πnπ2

π3

πn−1

(a)

π1

π γ1 γm π′

πn

S

T

(b)

Figure 12

Let S and T be two disjoint sets of letters, let (π, π1, . . . , πn, π
′) be an S-band,

and let (π, γ1, . . . , γm, π′) be a T -band. Suppose that

• the medians of these bands form a simple closed curve,
• on the boundary of π and on the boundary of π′ the pairs of S-edges
separate the pairs of T -edges,

• the start and end edges of these bands are not contained in the region
bounded by the medians of the bands.

Then we say that these bands form an (S, T )-annulus and the closed curve formed
by the parts of medians of these bands is the median of this annulus (see the right
side of Figure 3). For every annulus we define the inside diagram of the annulus
as the subdiagram bounded by the median of the annulus. The union of the inside
diagram and the annulus is called the subdiagram bounded by the annulus.

We shall call an S-band maximal if it is not contained in any other S-band.

2.2. Asphericity and free constructions. Let P = 〈X | R〉 be a group presen-
tation.

Assumption 2.3. We shall always assume that all words in R are cyclically re-
duced, no relator is a proper power in the free group, and no relator is a cyclic shift
of another relator or its inverse.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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A group presentation P is called (topologically) aspherical if the universal cover
of the presentation complex3 of P is contractible. The presentation P is combi-
natorially aspherical [6, Section 6] (sometimes also called Peiffer aspherical [4]) if
every spherical van Kampen diagram over P (i.e. a van Kampen diagram on a disc
with empty boundary) is (combinatorially) homotopic to a diagram without cells
[5], [6].

The following statement was proved in [5] using different terminology (pictures
instead of van Kampen diagrams). We are not going to show here that our termi-
nology is equivalent to the one in [5] (but see a translation of that terminology into
the language of diagrams in [20, Section 32]). In fact we only need the “only if”
implication of that lemma, which is obvious.

Lemma 2.4 ([5, Proposition 1.3]). Under Assumption 2.3 a group presentation is
combinatorially aspherical if and only if it is aspherical.

We shall use the following two “combination” statements for asphericity from
[5] (see Theorems 3.7 and 4.3 there). Since the terminology used in [5] differs from
ours, we provide a proof of the second statement here (the idea of the proof is
common for many proofs involving van Kampen diagrams). The proof of the first
statement is similar.

Lemma 2.5 (HNN-extensions). Let P1 = 〈M | L〉 be a presentation of a group T
and let P2 = 〈M, t | L, txit

−1y−1
i , i ∈ I〉 be the standard presentation of an HNN-

extension of T . Suppose that no txit
−1y−1

i is conjugate to any other relator of P2.
Then P2 is combinatorially aspherical if P1 is combinatorially aspherical and the
images in T of {xi, i ∈ I} and {yi | i ∈ I} are sets of free generators.

Lemma 2.6 (Amalgamated products). Let P = 〈M1,M2 | L1, L2, xiy
−1
i , i ∈ I〉

be the standard presentation of an amalgamated product where xi ∈ M1, yi ∈ M2.
Then P is combinatorially aspherical if P1 = 〈M1 | L1〉 and P2 = 〈M2 | L2〉 are
combinatorially aspherical, and both {xi, i ∈ I} and {yi, i ∈ I} freely generate free
subgroups of the groups given by P1 and P2, respectively.

Proof. Let Δ be a spherical diagram over P. We need to show that Δ is combi-
natorially homotopic to a trivial diagram. Recall [18] that Δ is a labeled graph
drawn on a tree of smaller spheres connected by paths. Since it is enough to prove
that each of the subgraphs on the smaller spheres is homotopically trivial, we can
assume that Δ is a labeled graph drawn on a sphere and every edge of Δ belongs
to the boundary of a cell.

If Δ only has cells corresponding to the relations of P1 (of P2), then we can use
asphericity of P1 (of P2). So assume Δ has cells corresponding to the relations of
both P1 and P2. Consider a maximal holey subdiagram Δ1 of Δ filled with P1-
cells. Since Δ1 �= Δ, it must have a non-trivial boundary component p (possibly
more than one) that bounds a subdiagram Δ2 (the one that does not contain Δ1)
containing cells. Let u be the label of that boundary component. Note that each
letter in u belongs to both a relation of P1 and a relation not in P1, which then must
be one of the relations xiy

−1
i , i ∈ I, since M1, M2 are disjoint. Hence u is a word in

{xi, i ∈ I}. Since {xi, i ∈ I} freely generates a free subgroup in the group given by
P1, it freely generates a free subgroup in the group given by P (the group given by

3The presentation complex of P has one vertex, edges corresponding to the generators of P,
and 2-cells corresponding to the relators of P [18].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A HIGMAN EMBEDDING PRESERVING ASPHERICITY 11

P1 embeds into the group given by P). Hence u is freely trivial. Using the diamond
moves, one can make the reduced boundary of Δ2 trivial. Since Δ2 has fewer cells
than Δ, we can use induction and conclude that Δ2 is combinatorially homotopic
to a trivial diagram. Hence Δ is combinatorially homotopic to a spherical diagram
with fewer cells and we can again use induction. �

3. An auxiliary group

Let A be an alphabet, and let B,X, Y be two-letter disjoint alphabets which are
disjoint from A. It is easy to find maps β, β′ : A ×X → B∗, χ, χ′ : A ×X → Y ∗,
γ : B × Y → Y ∗, ψ : B ×X → Y ∗, φ : A × Y → B∗ such that the set χ(A ×X) ∪
χ′(A×X)∪ γ(B × Y )∪ψ(B ×X) satisfies the small cancelation condition C ′( 1

12 );

the set β(A×X) ∪ β′(A×X) ∪ φ(A× Y ) also satisfies C ′( 1
12 ).

4

Let H(A) be the group given by the presentation

〈A ∪B ∪X ∪ Y | xa = β(a, x)aβ′(a, x)χ(a, x)xχ′(a, x), ya = aφ(a, y)y,
xb = bψ(b, x)x, yb = bγ(b, y), ∀a ∈ A, x ∈ X, b ∈ B, y ∈ Y 〉.

Figure 13 shows the cells corresponding to the defining relations of H(A). The
van Kampen diagrams over the presentation of H(A) are tesselated by these cells.

a b b

y x y

b

y x

a b
φ(a, y) ψ(b, x)

x

a

β(a, x)

a
β′(a, x)

χ(a, x)

x

χ′(a, x)

γ(b, y)

Figure 13. (A,X)-cell, (A, Y )-cell, (B,X)-cell, and (B, Y )-cell.

The words β(a, x), β′(a, x), χ(a, x), χ′(a, x), φ(a, y), ψ(a, y), γ(b, y) are called the
large sections of the defining relators and the corresponding sections of boundaries
of cells in the van Kampen diagrams will be called large sections of the cells. The
following lemma immediately follows from the fact that the set of all large sections
of defining relators satisfies the property C ′( 1

12 ).

Lemma 3.1. The presentation of H(A) satisfies C ′( 1
12 ). If a large section of a cell

π in a van Kampen diagram Δ over the presentation of H(A) shares a subpath of
at least 1

12 of its length with the boundary of another cell π′ of Δ, then π, π′ cancel.

For every van Kampen diagram Δ over the presentation of H(A) and every
p ∈ A ∪ B ∪ X ∪ Y , we can consider p-bands in Δ. We shall also call it an A-
band (B-band, X-band) if p ∈ A (resp. B,X). The A-bands can include (A,X)-
and (A, Y )-cells; X-bands can include (A,X)- and (B,X)-cells. Maximal A- or
X-bands can start and end on the boundary of Δ. A B-band may contain (B,X)-,

4For every alphabet T , the notation T ∗ stands for the set of all words in T . A set of words
Q satisfies the condition C′(λ) for some λ > 0 if for every two different cyclic shifts u, v of two
words in Q±1, the length of their maximal common prefix is smaller than λmin{|u|, |v|}.
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12 MARK SAPIR

(B, Y )-cells. It can start and end either on ∂Δ or on the boundary of an (A,X)-cell
or on the boundary of an (A, Y )-cell.

Lemma 3.2. In a reduced 5 van Kampen diagram over H(A), there are no

(1) A-annuli,
(2) X-annuli,
(3) B-annuli,
(4) (A,X)-annuli,
(5) (B,X)-annuli.

Proof. We prove all five statements by simultaneous induction on the number of
cells in the diagram. Suppose that a reduced van Kampen diagram over the pre-
sentation of H(A) has an annulus of one of the types mentioned in the lemma. Let
Δ′′ be the inside subdiagram of A, and let Δ′ be the diagram bounded by A. We
can assume that there is no annulus of one of the types (1)–(5) of the lemma with
a smaller inside subdiagram.

(1) Suppose that A is an A-annulus. The diagram Δ′′ does not contain (A,X)-
or (A, Y )-cells because its boundary does not contain A-edges and because, by the
minimality assumption, Δ′′ does not contain A-annuli. Hence all cells in Δ′′ are
(B,X)- and (B, Y )-cells.

Suppose that Δ′′ contains cells.
Since Δ′′ does not contain B-annuli, the boundary of Δ′′ contains B-edges. If

the diagram Δ′ contains an (A,X)- or a (B,X)-cell, then the X-band containing
this cell must intersect A twice creating an (A,X)-annulus with smaller inside
subdiagram than Δ′′. Hence Δ′′ does not contain (A,X)- or (B,X)-cells. Hence
all cells in Δ′′ are (B, Y )-cells, and all cells in A are (A, Y )-cells. Since Δ′′ does not
contain B-annuli, ∂Δ′′ must contain B-edges, and so the label of ∂Δ′′ is a product
of words from the set φ(A × Y )Y and their inverses. By the Greendlinger lemma
[18] one of the large sections γ(B×Y ) shares a subword of at least 1/2 of its length
with the label of ∂Δ′′, which contradicts the assumption that the set of all large
sections satisfies C ′( 1

12 ).
If Δ′′ does not contain cells, then its boundary label is freely trivial and by

Lemma 3.1 two neighbor cells in A cancel.
(2) The case when A is an X-annulus is ruled out similarly.
(3) Suppose that A is a B-annulus. Since Δ does not have (B,X)-annuli with

smaller inside subdiagrams than Δ′′, Δ′ does not contain (B,X)-cells. Hence Δ′

consists of (B, Y )-cells. But then the boundary of Δ′′ consists of Y -edges; hence
Δ′′ does not contain B-bands. Thus Δ′′ does not contain cells. Hence the label of
∂Δ′′ is freely trivial. The fact that γ(B × Y ) satisfies the condition C ′( 1

12 ) implies
that this set freely generates the free group; hence the label of Δ′ is freely trivial
as well, and so A contains a pair of cells that cancel by Lemma 3.1.

(4) Suppose that A is an (A,X)-annulus, composed of an A-band A1 and a X-
band A2. By the minimality of Δ′′, we can assume that A contains only two cells
having X- or A-edges, the two common cells π1, π2 of A1 and A2. Hence all cells in
Δ′′ are (B, Y )-cells. Now the condition C ′( 1

12 ) satisfied by the set of large sections
immediately implies that Δ′′ does not contain cells. Thus the label of the boundary
of Δ′′ is freely trivial. There are four possibilities for the diagram Δ′ depending
on which edges on ∂π1 and ∂π2 are connected by A1 and A2. These possibilities

5We call a diagram reduced if it does not contain two mirror image cells sharing an edge.
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β(a, x) β(a, x)

a a
β′(a, x) β′(a, x)

χ(a, x) χ(a, x)

x x

χ′(a, x) χ′(a, x)

A2

Δ′′

A1

Figure 17

are depicted on Figures 14-17. In each of these figures let p1 be the intersection
of ∂Δ′′ with ∂A1 and let p2 be the intersection of ∂Δ′′ with A2. It is easy to see
that in each of the four cases Lab(p1) should be conjugate to Lab(p2) in the free
group. Unless both Lab(p1) and Lab(p2) are empty, this leads to a contradiction
as follows.

In the case of Figure 14, Lab(p1) is a product of words from the set φ({a}×Y )Y
and their inverses, and Lab(p2) is a word in B. In the case of Figure 15, Lab(p1)
is a product of words from the set φ({a} × Y )Y and their inverses (a here is the
label of the a-edges in π1 and π2), and Lab(p2) is a product of word of the form
Bψ(B × {x}) and their inverses (x here is the label of x-edges in π1, π2). In the
case of Figure 16, Lab(p1) is a word in Y , while Lab(p2) is a word in B. In the
case of Figure 17, Lab(p1) is a word in Y , and Lab(p2) is a product of words from
Bψ(B × {x}) and their inverses. In each of these cases the words Lab(p1) and
Lab(p2) are obviously non-conjugate in the free group.

(5) Suppose that A is a (B,X)-annulus composed of a B-band A1 and an X-
band A2. Then A2 cannot contain (A,X)-cells (otherwise the A-band containing
that cell will form an (A,X)-annulus with A2 whose inside subdiagram would be
smaller than Δ′′). Hence all cells in A1 are (B, Y )-cells and all cells in A2 are
(B,X)-cells. If A2 is not empty, then the B-band starting on the boundary of a
cell in A2 would form a (B,X)-annulus with A2 whose inside subdiagram would
be smaller than Δ′′. Thus A2 is empty and π1, π2 cancel, a contradiction. �

Lemma 3.3. The sets A ∪ B, X ∪ Y freely generate free subgroups of H(A), and
〈A ∪B〉 ∩ 〈X ∪ Y 〉 = {1}.

Proof. Suppose that there exists a reduced non-empty diagram Δ over H(A) with
∂(Δ) = pq, Lab(p) is a reduced group word in A ∪ B, Lab(q) is a reduced group
word in X∪Y , and one but not both of these words may be empty. If Δ contains an
(A,X)-cell π, then consider the maximal A-band A containing that cell. That band
must start and end on p because q does not contain A-edges. Then the maximal
X-band X containing π intersects A. By Lemma 3.2, X must end on p. This
is a contradiction since p does not contain X-edges. Hence Δ does not contain
(A,X)-cells.
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If Δ contains an (A, Y )-cell π, then let A be the maximal A-band containing π.
Let Δ′ be the subdiagram of Δ bounded by the median of A and p. The boundary
of Δ′ is of the form p′q′ where p′ is a subpath of p, q′ is a subpath of a side of
A. Note that q′ must contain y-edges otherwise two neighbor cells in A cancel (by
Lemma 3.1). Since p does not contain y-edges, the diagram Δ′ must contain cells.

We can assume that Δ′ does not contain (A, Y )-cells (otherwise we can consider
a smaller subdiagram). Hence it consists of (B, Y )-cells. The condition C ′( 1

12 )
implies that the large section of one of the (B, Y )-cells in Δ shares a subpath of at
least 1

6 of its length with q′, which is impossible because the set of all large sections

satisfies C ′( 1
12 ). This contradiction proves both statements of the lemma. �

Definition 3.4. If W is a word in an alphabet Z, Z ′ ⊂ Z, then the projection of
W onto the alphabet Z ′ is the word obtained by deleting all letters of Z \ Z ′ (and
their inverses) from W .

Lemma 3.5. Every positive word W in A∪B∪X∪Y is equal in H(A) to a unique
word of the form UV where U ∈ (A∪B)∗, V ∈ (X ∪Y )∗. The projections of U and
W onto the alphabet A are equal and the projections of V and W on the alphabet
X are equal.

Proof. For the proof of existence and the statement about projections, it is enough
to prove the following

Claim. For every positive word W in the alphabet X ∪ Y and every p ∈ A ∪ B
there exist positive words U ∈ (A ∪B)∗, V ∈ (X ∪ Y )∗ such that

Wp = UV

in H(A); the projections onto X of V and W are the same; if p ∈ B, then U ≡ p;
if p ∈ A, then U contains only one A-letter, p.

If W is empty, then there is nothing to prove. Let W ≡ W ′z. We consider
several cases depending on which set z or p belongs to. In each case, the proof is
by induction on the pair (m,n) where m is the number of X-letters and n is the
number of Y -letters in W .

Step 1. We prove that the claim is true if p ∈ B. If m = 0, then the result
follows from the (B, Y )-relations. Suppose we have proved the statement for m and
suppose that W contains m+1 occurrences of letters from X. Then W = W ′xW ′′

where x ∈ X, W ′′ ∈ Y ∗. Therefore Wp = W ′xW ′′p = W ′xpV1 for some word
V1 ∈ Y ∗ since W ′′ does not contain X-letters. By the (p, x)-relation, we have
Wp = W ′pψ(p, x)xV1. Since W ′ has m X-letters, the result follows by induction.
Thus our claim is true if p ∈ B.

Step 2. We prove that the claim is true if p ∈ A, z ∈ Y . We have Wp = W ′zp =
W ′pφ(p, z)z. SinceW ′ has fewer letters thanW , we deduce thatWp = U1V1φ(p, z)z
where U1 ∈ (A ∪B)∗, V1 ∈ (X ∪ Y )∗, the only A-letter in U1 is p, and the number
of X-letters in V1 is the same as in W ′. Since φ(p, z) ∈ B∗, we can finish the proof
by applying the statement of Step 1 several times.

Step 3. Finally we prove the claim if p ∈ A, z ∈ X. In this case we have

(3.1) Wp = W ′zp = W ′β(p, z)pβ′(p, z)χ(p, z)zχ′(p, z).
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Since β(p, z) is a positive word in the alphabet B, we can apply the statement of
Step 1 several times, and find V1 ∈ (X ∪ Y )∗ such that W ′β(p, z) = β(p, z)V1 and
the number of X-letters in V1 is the same as in W ′. Then from (3.1), we obtain

(3.2) Wp = β(p, z)V1pβ
′(p, z)χ(p, z)zχ′(p, z).

Since V1 contains fewer X-letters than W , we can first apply the statements of
Steps 2 and 1 and then the inductive hypothesis and obtain that

V1p = U1V2

where U1 ∈ (A ∪B)∗ contains exactly one A-letter, p, and V2 ∈ (X ∪ Y )∗ contains
the same number of X-letters as V1. Now from (3.2) we obtain

Wp = β(p, z)U1V2β
′(p, z)χ(p, z)zχ′(p, z)

and it remains to apply the statement of Step 1 again several times.

This completes the proof of existence and the statement about projections.
To show uniqueness of U, V , we need to prove that there are no reduced group

words U,U ′ over A ∪ B and V, V ′ over X ∪ Y such that UV = U ′V ′ in H(A) and
either U �= U ′ or V �= V ′, but that follows immediately from Lemma 3.3. �

Remark 3.6. Since the presentation of the group H(A) satisfies C ′( 1
12 ), it is combi-

natorially aspherical (in fact even diagrammatically aspherical) [18]. Hence Lemma
3.5 implies that for every positive W in A ∪ B ∪ X ∪ Y there exists a unique
(up to combinatorial homotopy) van Kampen diagram Υ(W ) with boundary label
W−1UV where U = U(W ) is a word in A ∪B and V = V (W ) is a word in X ∪ Y .
Words U, V are uniquely determined by W .

Remark 3.7. It is easy to see that the lengths of words U, V are in general at least
exponential in terms of the length of W (in fact the maximal sum |U | + |V | for
|W | = m is at least expO(m2)). But the proof of Lemma 3.5 gives an algorithm of
computing U, V given W .

Notation 3.8. Let ua, a ∈ A, be positive words in A satisfying C ′( 1
12 ), and let

va, a ∈ A, be positive words in X satisfying C ′( 1
12 ). The words ua, a ∈ A, and

va, a ∈ A, will be called A- and X-blocks, respectively. Let E be the subgroup
of H(A) generated by uava. We shall denote uava by μ(a). Let N be a normal
subgroup of E generated by some set μ(R) where R is a set of words in A, and let
�N� be the normal closure of N in H(A).

Lemma 3.9. If two words va, vb share a subword of length 1
12 min(|va|, |vb|), then

a = b (the same statement for u instead of v is also true).

Proof. Indeed, by C ′( 1
12 ) in this case va ≡ vb. Hence a = b. �

Lemma 3.10. E is a free subgroup of H(A) freely generated by {μ(a), a ∈ A}.

Proof. Indeed, let Δ be a reduced van Kampen diagram over the presentation of
H(A) whose reduced boundary label is a product of words μ(a) = uava. If Δ has
cells, then by the Greendlinger lemma [18], one of the cells shares a non-trivial
subpath of its large section with ∂Δ, but large sections consist of B- and Y -edges,
a contradiction. Hence Δ has no cells and the boundary label of Δ is freely trivial.
The small cancelation condition C ′( 1

12 ) then implies that ∂Δ is empty. Hence the
words μ(a), a ∈ A, freely generate E. �
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Lemma 3.11. Let W = μ(r) for some positive word r in the alphabet A. Let U =
U(W ), V = V (W ) be the words determined by Lemma 3.5. Then each of the three
words U, V,W uniquely determines the two other words and (up to combinatorial
homotopy) the diagram over H(A) for the equality W = UV .

Proof. Indeed, by Lemma 3.5, the projections of U and W on A coincide. If r =
a1 . . . al, ai ∈ A, then both projections are equal to ua1

. . . ual
. Since the words

uai
satisfy C ′( 1

12 ), UA determines r. Hence U determines W . Since W determines
V by Lemma 3.5, U determines W and V . The fact that V determines U,W is
proved similarly (one needs to consider the projections onto X). The fact that W
determines U, V is in Lemma 3.5.

The fact that W,U, V uniquely (up to combinatorial homotopy) determine the
diagram Υ(W ) for the equality W = UV is in Remark 3.6. �

Notation 3.12. Consider a van Kampen diagram Δ over the presentation that con-
sists of the defining relations of H(A) and all reduced words from μ(R) (Notation
3.8). The cells corresponding to relations from μ(R) will be called N -cells.

A holey subdiagram of Δ where the label of each boundary component is freely
equal to a product of words μ(a) and their inverses will be called a holey E-
subdiagram. In particular, anN -cell is an E-subdiagram. Using diamond moves, we
can make all boundary components of all maximal holey E-subdiagrams reduced.
The small cancelation condition C ′( 1

12 ) implies that an A- or X-block in a product
of words of the form μ(a) = uava and their inverses shares less than 1/6 of its length
with the neighbor blocks. Thus the reduced label of the boundary component of a
holey E-subdiagram is a concatenation (without cancelations) of words u′

av
′
a and

their inverses where u′
a is a subword of an A-block of length at least 5/6 of the

length of the block and v′a is a subword of an X-block of length at least 5/6 of the
length of the block. The words u′

a, v
′
a are called A- and X-subblocks. Thus each

boundary label of Δ′ is a reduced word that is a concatenation of A-subblocks and
X-subblocks.

So we will assume that this property holds and we will call a maximal holey E-
subdiagrams N -subdiagrams of Δ. Note that by the congruence extension property
that we shall prove later, the label of every boundary component of every N -
subdiagram is in N (Lemma 3.15). Consider the graph � = �(Δ) whose vertices
are the holey N -subdiagrams of Δ. Two vertices are connected if there exists an
X-band connecting the corresponding subdiagrams. Note that � is a planar graph
since X-bands do not intersect.

We say that two paths p1, p2 in a diagram Δ share large X-portion if p1 = q1pq
′
1,

p2 = q′2pq2, and Lab(p) is a subword of a word va (resp. ua), a ∈ A, of length at
least 1

12 |va| (resp.
1
12 |ua|).

We shall use the following classical result of Heawood [14] several times.

Lemma 3.13. Every non-empty planar graph without loops and multiple edges has
a vertex of degree at most 5.

We shall need the following lemma.

Lemma 3.14. Suppose that Δ is reduced.
(a) Let Π be a holey E-subdiagram of Δ. Then no X-band or A-band can start

and end on ∂Π.
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(a′) Suppose that ∂Δ = pq where Lab(p) is a subword of a product of words μ(a).
Then no X-band or A-band can start and end on p.

(b) Let Π,Π′ be holey E-subdiagrams in Δ. Let e1, e2 be consecutive X-edges
(resp. A-edges) of ∂Π and let the X-bands X ,X ′ starting on e1 and e2 end on ∂Π′.
Then X ,X ′ are empty bands.

(b′) Suppose that ∂Δ = pq where Lab(p) is a subword of a product of words
μ(a). Let Π be a holey E-subdiagram of Δ. Let e1, e2 be consecutive X-edges (resp.
A-edges) of ∂Π and let the X-bands (resp. A-bands) starting on e1, e2 end on p.
Then X ,X ′ are empty bands.

(c) Suppose that ∂Δ = pq where Lab(p) is a subword of a product of words μ(a),
a ∈ A, and Lab(q) does not have letters from X (resp. letters from A). Suppose Δ
has N -cells. Then there exists a holey N -subdiagram that shares a big X-portion
(resp. big A-portion) of its boundary with p.

Proof. We shall prove the five statements by a simultaneous induction on the num-
ber of cells in Δ. For diagrams without cells all five statements are obviously true.
Suppose that Δ is a minimal counterexample (with respect to the number of cells).

Suppose that Δ does not satisfy (a) and that an X-band X starts and ends on
the same block subdiagram Π in Δ. Let e1 be the start edge and let e2 be the end
edge of X , and (without loss of generality) assume that e1 precedes e2 in ∂Π (traced
counterclockwise). Let p be the subpath of ∂Π between e1 and e2. Let Δ′ be the
subdiagram of Δ bounded by p and the median of X . Suppose that Δ′ has N -cells.
Then by (c) there exists an N -cell π that shares a big X-portion of its boundary
with p. By Lemma 3.9 the union of Π and π is an E-subdiagram which contradicts
maximality of Π. Hence Δ′ does not contain N -cells, so Δ′ is a diagram over the
presentation of H(A). Therefore, since X-bands do not intersect, every X-band of
Δ′ starting on p must end on p. Thus we can assume that there are no X-edges on
p.

Hence all edges on p (if any) are A-edges. Since the boundary of Δ′ contains no
X-edges, Δ′ does not contain (A,X)- and (B,X)-cells by Lemma 3.2. Since the
presentation of H(A) satisfies C ′( 1

12 ) (Lemma 3.1), by the Greendlinger lemma [18]

the boundary ∂π1 of one of the cells in Δ′ shares a subpath of length at least 9
12 of

the length of ∂π1 with the boundary of Δ′. Therefore there exists a large section
from φ(A× Y ) or γ(B × Y ) which shares a subpath of at least 1

6 of its length with
a product of at most two large sections from the set χ′(A×X)∪ β(A,X)∪ β′(A×
X) ∪ χ(A×X). That is impossible because the set of all large sections of defining
relators satisfies the small cancelation condition C ′( 1

12 ).
The case when Δ does not satisfy (a′) is completely analogous to the previous

case. Only instead of joining Π and π together, we would need to cut off π from Δ
reducing the number of cells.

Suppose now that Δ does not satisfy (b). Let e1, e2 (resp. e′1, e
′
2) be the start

(resp. end) edges of X1,X2. We suppose without loss of generality that the labels
of e1, e2 are positive. We also assume that e1 precedes e2 on ∂Π. Then e′2 precedes
e′1 on ∂Π′. Let p (resp. p′) be the subpath between e1, e2 (resp. e′2 and e′1) on ∂Π
(resp. ∂Π′). By (c), the subdiagram bounded by the medians of X ,X ′, p, p′ does
not contain N -cells. By (a) e′2, e

′
1 are consecutive X-edges of ∂Π′ (that is, there

are no X-edges of ∂Π between them).
Since ∂Δ′ does not contain X-edges, Δ′ does not contain (A,X)- and (B,X)-

cells by Lemma 3.2. Thus Δ′ is a reduced diagram over the presentation involving
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only (A, Y )- and (B, Y )-cells. This and the small cancelation property C ′( 1
12 ) imply

that Δ′ does not have cells. Hence if, say, X is not empty, a cell in X shares more
than 1/12 of one of its large sections with a large section of another cell of X or with
a large section of a cell in X ′. By Lemma 3.1, these two cells cancel, a contradiction
to the assumption that Δ is reduced. Hence X ,X ′ are empty, a contradiction.

Suppose that Δ does not satisfy (b′). The only difference with the previous case
is that the end edges of X and X ′ are consecutive x-edges on ∂Δ in this case, and
we need to use (a′) instead of (a). Since the label of ∂Δ is a product of words of
the form uava in this case, the proof proceeds the same way as in the previous case.

Finally suppose that Δ does not satisfy (c). Assume Lab(q) does not have letters
from X (the other case is similar).

By (a), the graph � from Notation 3.12 does not have a vertex connected to
itself. By Lemma 3.13, � has a vertex of degree at most 5.

Suppose that Δ contains two N -subdiagrams Π and Π′ such that at least one
fifth of all X-bands starting on ∂Π end on ∂Π′. By (b), then Π and Π′ share large
X-portions of their boundaries. Therefore the boundaries of the union of Π and Π′

have labels from E (by Lemma 3.9), which contradicts the maximality of Π and Π′

(as vertices of �).
Therefore there is an N -cell in Δ and at least one fifth of all X-bands starting

on ∂Π end on ∂Δ. Hence there exists a subpath v on the boundary whose label
is an X-subblock w and at least |w|/5 of the consecutive X-bands starting on w

end on ∂Δ. By (a′), the end edges of these bands are consecutive edges of ∂Δ.
Therefore the end edges of these bands form a path p whose label is Lab(w). By
(b′) all these X-bands are empty, so Π shares a big portion of its boundary with p,
a contradiction. �

Lemma 3.15. The subgroup E of H(A) satisfies the congruence extension prop-
erty; that is, the intersection of �N� with E is N (i.e. E/N naturally embeds
into H(A)/ �N�) for every normal subgroup N of E.

Proof. Suppose that W ∈ E belongs to �N�. Then we may assume that W is
a product of words uava and their inverses and that there exists a van Kampen
diagram Δ over the presentation that consists of the defining relations of H(A)
and all words from N and boundary label W . We need to show that W ∈ N . By
contradiction assume that W is a counterexample and Δ is a minimal (with respect
to the number of cells) diagram for W = 1 for all counterexamples W . If Δ does
not contain N -cells, then Δ is a diagram over the presentation of H(A) and so it
does not contain cells by Lemma 3.10.

Suppose that Δ contains N -cells. Consider the graph � as in Notation 3.12. By
Lemma 3.13 there exists a vertex Π in � of degree at most 5. Therefore at least 1

5
of the consecutive X-bands starting on ∂Π end either on the boundary of another
N -subdiagram Π′ or on ∂Δ. The first possibility would mean, by Lemma 3.14,
that Π and Π′ share large X-portions of their boundaries. Hence by Lemma 3.9 the
union of Π and Π′ is a holey E-subdiagram of Δ which contradicts the maximality
of Π,Π′. If the second possibility occurs, then by Lemma 3.14(b′), Π shares a large
X-portion of its boundary with the boundary of Δ. Then (again by Lemma 3.9) we
can cut π off Δ and produce a smaller diagram Δ′ with boundary label in E. By
the minimality assumption for Δ, Lab(∂Δ′) must belong to N . But then W ∈ N
as well, a contradiction. �
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Lemma 3.16. For every normal subgroup N of E, 〈A ∪ B〉 ∩ �N� = {1},
〈X ∪ Y 〉 ∩�N� = {1}.

Proof. Suppose that the boundary label of Δ is a reduced group word in A ∪ B.
By Lemma 3.14(c), Δ has no N -cells. If Δ has (A,X)-cells or (B,X)-cells, then
it has X-bands, which must start and end on the boundary of Δ by Lemma 3.2, a
contradiction. Hence Δ consists of (B, Y )-cells. These relations satisfy the small
cancelation condition C ′( 1

12 ). By the Greendlinger lemma [18] there exists a cell π

in Δ such that at least 9
12 of ∂π is contained in ∂Δ. But 9

12 of the boundary of a
(B, Y )-cell contains Y -edges, a contradiction.

Suppose that the boundary label of Δ is a reduced word in X ∪ Y . As in
the previous paragraph, Δ does not contain N -cells, (A,X)-cells, and (A, Y )-cells.
Therefore Δ contains only (B,X)- and (B, Y )-cells. Then the B-bands must start
and end on the boundary of Δ by Lemma 3.2, a contradiction. �

Lemma 3.17. For every word U in 〈A∪B〉 there exists at most one pair of reduced
words W ∈ E and V ∈ 〈X ∪ Y 〉 such that W = UV in H(A).

Proof. Indeed, if W = UV and W ′ = UV ′, then W−1W ′ = V −1V ′ ∈ 〈X∪Y 〉∩E =
{1} by Lemma 3.16 (take N = E there). Hence W = W ′, V = V ′ in the free
group. �

Notation 3.18. Consider any group Γ = 〈A | R〉. We always assume that the
presentation of Γ is positive, i.e. consists of positive words in the alphabet A. For
this, we assume that A is divided into two parts of equal sizes A+, A− with a
bijection ¯ : A+ ↔ A− and that R contains all relations of the form aā = 1, a ∈ A.
Clearly every group with combinatorially aspherical presentation has a positive
combinatorially aspherical presentation.

Let A′ be a copy of A, let ε be a bijection A → A′, and let R′ = ε(R) be the set
of words R rewritten in A′, Γ′ = 〈A′ | R′〉.

Let H ′(Γ) be the group 〈Γ′, H(A), q | qε(a)q−1 = μ(a), a ∈ A′〉; that is, H ′(Γ) is
the factor-group of the free product Γ′ ∗H(A)∗Z (where the copy of Z is generated
by q) by the conjugacy q-relations qε(a)q−1 = μ(a).

Lemma 3.19. Let N be the normal subgroup of H(A) generated (as a normal
subgroup) by μ(R), H ′ = H(A)/N . The group H ′(Γ) is isomorphic to the HNN-
extension of the free product H ′ ∗ Γ with free letter q and associated subgroups Γ′

and 〈μ(A)〉N/N .

Proof. Indeed it is enough to establish that the groups Γ and 〈μ(A)〉N/N are
isomorphic. But that follows from the congruence extension property satisfied by
the subgroup E = 〈μ(A)〉 in H(A) by Lemma 3.15. �

Relations of H ′(Γ) and cells in the van Kampen diagram corresponding to the
relations from R of Γ will be called Γ-relations and Γ-cells.

Lemma 3.20. Suppose that every disc subdiagram Δ′ of a diagram Δ whose bound-
ary consists of A′-edges consists of Γ-cells. Suppose also that ∂Δ does not consist
of A′-edges and does not contain q-edges. Then every Γ-cell in Δ is in the inside
diagram of a q-annulus of Δ.
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Proof. Indeed, let Δ1 be a maximal holey subdiagram of Δ′ that consists of Γ-cells.
Every boundary component of Δ1 consists of A′-edges. By our assumption, Δ1

does not have holes and is a disc subdiagram. At least one edge on ∂Δ1 must
belong to the boundary of a q-cell (since ∂Δ′ does not consist of A′-edges). The
q-band containing that cell is an annulus since ∂Δ does not contain q-edges. That
annulus cannot have an outside boundary consisting of A′-edges by our assumption
(see Figure 18(a)). So its inside diagram must contain Δ1 (see Figure 18(b)). �

q

q

a μ(a) a μ(a)

q

q

Δ1 Δ1

(a) (b)

Figure 18

Lemma 3.21. Every diagram over the presentation of H ′(Γ) whose boundary con-
sists of A′-edges is combinatorially homotopic to a diagram consisting of Γ-cells.
The subset X ∪ Y of H ′(Γ) freely generates a free subgroup.

Proof. Let H ′′ be the group given by the presentation of H ′(Γ) without the Γ-
relations. Then H ′′ is the HNN-extension of the free product 〈A′〉 ∗ H(A) with
free letter q and associated subgroups 〈ε(A)(1)〉 and 〈μ(A)(1)〉 which are both free
and freely generated by their respective generating sets by the definition of ε and
μ. Hence by Lemmas 2.5 and 2.6, the presentation of H ′′ is aspherical. The
standard properties of HNN-extensions and free products show that the set A′

freely generates a free subgroup in H ′′.
With every diagram Δ over the presentation of H ′(Γ) we associate its 2-weight,

a pair of numbers (m,n) where n is the number of Γ-cells in Δ and m is the number
of other cells in Δ. We order all pairs (m,n) lexicographically.

Now consider any reduced van Kampen diagram Δ over the presentation of
H ′(Γ) whose boundary consists of A′-edges. Suppose that Δ is not combinatorially
homotopic to a diagram containing only Γ-cells and that it is a smallest 2-weight
diagram with this property and boundary label in A′.

If Δ does not contain Γ-cells, then the diagram is combinatorially homotopic to
the trivial diagram because it is a diagram over the presentation of H ′′.

Suppose that Δ contains Γ-cells.
If Δ does not contain conjugacy q-cells, then the boundary of every maximal

holey subdiagrams of Δ consisting of Γ-cells must coincide with the boundary of
Δ; therefore Δ consists of Γ-cells. Thus we can assume that Δ contains conjugacy
q-cells. Hence Δ has a q-annulus A consisting of conjugacy q-cells. Then the
label of the outer boundary of A is either a word in A′ or is from E. Suppose
that the first option holds. If ∂Δ is not the outer boundary of A, we can use the
minimality of Δ and conclude that the diagram bounded by the outer boundary
of A is combinatorially homotopic to a diagram consisting of Γ-cells. That would
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reduce the number of non-N -cells in Δ and the 2-weight of Δ, which is impossible.
Thus in the first case ∂Δ is the outer boundary of A. The boundary label of the
inside subdiagram Δ′ bounded by the median of A is from E. If the second option
is true, we can take Δ′ to be the subdiagram bounded by the outer boundary of A.
Note that in both cases Δ′ contains cells.

If Δ′ does not contain conjugacy q-cells, then it cannot contain Γ-cells either
(otherwise consider a maximal holey subdiagram consisting of Γ-cells), and so it is
a diagram over the presentation of H(A). Since the group E = 〈μ(A)〉 in H(A)
is free (by Lemma 3.10), we would have that the label of Δ′ is freely trivial, so
A contains two neighbor cells that cancel. Hence we can assume that Δ′ contains
conjugacy q-cells and q-annuli. By the minimality of Δ, the external boundary of
each of these annuli must have label from E and the internal boundary must consist
of A′-edges. By Lemma 3.19, the label of the external boundary of any q-annulus
in Δ must then be a word from N .

By Lemma 3.20, every Γ-cell in Δ′ is in the inside subdiagram of a q-annulus.
Maximal subdiagrams of Δ′ bounded by q-annuli will be called q-subdiagrams; the
q-annulus bounding a q-subdiagram is called the main q-annulus of the subdiagram.
Using diamond moves, we can make the boundary of every q-subdiagram reduced.
Note that all q-subdiagrams are E-subdiagrams of Δ as in Notation 3.12.

The diagram Δ′ is tesselated by q-subdiagrams and cells corresponding to the
relations of H(A), so the situation is the same as the one considered in Notation
3.12 since we can view Δ′ as a reduced diagram over the presentation consisting of
N -relations and relations from H(A).

As in Notation 3.12 consider the graph � whose vertices are all q-subdiagrams
of Δ′ bounded by q-annuli and for which two vertices are connected if there is an
X-band connecting them. Since � is a planar graph without multiple edges and
vertices adjacent to themselves (by Lemma 3.14(a)), there must be (by Lemma 3.13)
a vertex of degree at most 5. Hence either at least 3

12 of the consecutive X-bands
starting on one of the X-blocks of the boundary of a q-subdiagram Π1 end on an
X-block of the boundary of another q-subdiagram Π2 or 3

12 of the X-bands starting
on one of the X-blocks of the boundary of a q-subdiagram Π1 end on one of the
X-blocks of the boundary of Δ′. By Lemma 3.14(b) the X-bands connecting these
blocks are empty. Therefore Π1 shares a large X-portion of its boundary either
with another q-subdiagram Π2 or with the boundary of Δ′. Applying Lemma 3.9,
we conclude that in the first case a cell of the main q-band of Π1 cancels with a
cell of the main q-band of Π2, and, in the second case, a cell of the main q-band
of Π1 cancels with a cell in A. This contradiction completes the proof of the first
statement of the lemma.

The second statement immediately follows from Lemmas 3.19 and 3.16. �

4. The main construction

Let Γ = 〈A | R〉 be a finitely generated recursively presented group, so that R is
a recursive set of defining relations. In this section, we describe an embedding of Γ
into a finitely presented group G.

4.1. Preliminaries on S-machines.

4.1.1. A definition of S-machines. Following [29], [2] we shall give two (equivalent)
definitions of S-machines (a slightly different definition can be found in [24], [23],
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[26] and other papers, but since we are going to use the results of [29], we give
definitions that are closer to [29]). Let n be a natural number. A hardware of an
S-machine is a pair (Z,Q) where Z is an (m− 1)-vector of (not necessary disjoint)
sets Zi of tape letters and Q is an m-vector of disjoint sets Qi of state letters. The
sets

⋃
Qi and

⋃
Zi are also disjoint.

The language of admissible words is L(S) = Q1F (Z1)Q2 . . . F (Zn−1)Qm where
F (Zj) is the language of all reduced group words in the alphabet Zj ∪ Z−1

j .
If 1 ≤ i ≤ j ≤ m andW = q1u1q2 . . . um−1qm is an admissible word, qi ∈ Qi, ui ∈

(Zi ∪Z−1
i )∗, then the subword qiui . . . qj of W is called the (Qi, Qj)-subword of W .

An S-machine with hardware S is a rewriting system. The objects of this rewrit-
ing system are all admissible words.

The rewriting rules, or S-rules, have the following form:

[U1 → V1, . . . , Un → Vn]

where the following conditions hold:

• Each Ui is a subword of an admissible word starting with a Q�-letter and
ending with a Qr-letter 
 = 
(i), r = r(i).

• If i < j, then r(i) < 
(j).
• Each Vi is also a subword of an admissible word whose Q-letters belong to
Q�(i) ∪ . . . ∪Qr(i) and which contains a Q�(i)-letter and a Qr(i)-letter.

• V1 must start with a Q1-letter and Vn must end with a Qm-letter.
• If some Qi does not have a representative that appears in any Uj , then we
assume that the rule includes q → q for every q ∈ Qi.

To apply an S-rule to a word W means to replace simultaneously subwords Ui by
subwords Vi, i = 1, . . . , n. In particular, this means that our rule is not applicable
if one of the Ui’s is not a subword of W . The following convention is important:

After every application of a rewriting rule, the word is automatically
reduced.

With every S-rule τ we associate the inverse S-rule τ−1 in the following way: if

τ = [U1 → x1V
′
i y1, U2 → x2V

′
2y2, . . . , Un → xnV

′
nyn]

where V ′
i starts with a Q�(i)-letter and ends with a Qr(i)-letter, then

τ−1 = [V ′
1 → x−1

1 U1y
−1
1 , V ′

2 → x−1
2 U2y

−1
2 , . . . , V ′

n → x−1
n Uny

−1
n ].

It is clear that τ−1 is an S-rule, (τ−1)−1 = τ , and that rules τ and τ−1 cancel
each other (meaning that if we apply τ and then τ−1, we return to the original
word).

The following convention is also important:
We always assume that an S-machine is symmetric, that is, if an S-

machine contains a rewriting rule τ , it also contains the rule τ−1. Among
any pair of mutually inverse rules we pick one which we call the positive rule; the
other rule is called negative.

We define the history of a computation of an S-machine as the sequence (word)
of rules used in this computation. A computation is called reduced if the history of
this computation is reduced, that is, if two mutually inverse rules are never applied
next to each other.

For some S-machines we distinguish input and stop admissible words. Properties
of these words are listed below.
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Remark 4.1. We always assume that:

• There is only one stop word; it does not contain tape letters.
• If we remove tape letters from any two input words, we obtain the same
word q1 . . . qm which we call the input base.

• A negative rule cannot apply to any input word.
• There exists only one positive rule that applies to an input word. It has
the form [q1 → q̃1, . . . , qm → q̃m] where q̃i �= qi for some i (it just replaces
the state letters of the input word by different state letters). This rule will
be called the transition rule of the S-machine.

If an S-machine S has a stop word W0, then we say that an admissible word
W is accepted by S if there exists a computation of S starting with W and ending
with W0. That computation is called an accepting computation for W .

4.1.2. Recursively enumerable sets and S-machines. One of the main results of [29]
implies that for every recursively enumerable set of words L in an alphabet A there
exists an S-machine S recognizing L in the following sense.6

Proposition 4.2. The S-machine S has a stop word W0. For every positive word
u in the alphabet A, there exists an input word I(u) and the following hold:

(1) The input word I(u) has the form q1uq2 . . . qm, qi ∈ Qi, i = 1, . . . ,m.
(2) A word u belongs to L if and only if I(u) is accepted by S.
(3) If I(u) is accepted by S, then there exists only one reduced computation

accepting I(u).
(4) There is only one reduced computation connecting W0 with itself, the empty

one.

Proof. Take a deterministic Turing machine T recognizing L. Convert it into a
symmetric Turing machine T ′ using [29, Lemma 3.1]. Then use [29, Proposition 4.1]
to convert T ′ into an S-machine.7 The fact that this S-machine satisfies conditions
(1)–(4) of the proposition immediately follows from [29, Lemma 3.1 and Proposition
4.1]. �

4.1.3. S-machines as HNN-extensions of free groups. Another, probably even eas-
ier, way to look at S-machines is to consider them as multiple HNN-extensions of
free groups (see [26], [27]). Let S be an S-machine with the set of tape letters

Z =
⋃m−1

i=1 Zi, the set of state letters8 Q =
⊔m

i=1 Qi, and the set of rules Θ. The
set of all positive rules is denoted by Θ+.

The generating set of the group is Q ∪ Z ∪Θ+. The relations are

Uiθ = θVi, i = 1, . . . , n

6More precisely, the S-machine S we use is the S-machine from [29] without α- and ω-sectors.
These sectors are needed in [29] only to control the Dehn function of the resulting group. The
facts from [29] that we are using here remain true. We could use literally the same S-machines
as in [29] but it would make our proof unnecessarily more cumbersome because the input words
would contain powers of α and ω.

7The conversion in [29] was very complicated because we needed to control the speed of the
S-machine. Since we do not care about the speed of the S-machines in this paper, we could use
the simpler but (exponentially) slower S-machines constructed in [24]. Still the S-machine from
[29] is useful for us because we can use some facts about it proved in [29].

8� denotes the disjoint union.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A HIGMAN EMBEDDING PRESERVING ASPHERICITY 25

(these relations will be called (Q,Θ)-relations) and

θa = aθ

for all a ∈ Z, θ ∈ Θ+ (these relations will be called (Z,Θ)-relations).
For simplicity and following [26], [27], we shall call this group an S-machine too

and denote it by the same letter S.

Lemma 4.3 ([29, Lemma 7.6]). In any reduced diagram over the presentation of
an S-machine S, there are no Θ-annuli, Qi-annuli, and Z-annuli.

W1

W2

W3

Wg−1

Wg

θ1

θ2

θg

θ1

θ2

θg

. . .

Figure 19. A computational sector.

Consider now an arbitrary computation C = (W1,W2, . . . ,Wg) of an S-machine
S with a history word h. With every i = 1, . . . , g − 1 we associate the Θ-band
Ti with the boundary label θ−1

i WiθiW
−1
i+1 where θi is the i-letter in h. We can

“concatenate” all these bands to obtain a van Kampen diagram with boundary of
the form p

−1
1 p2p3p

−1
4 where p1, p4 are labeled by h, Lab(p2) ≡ W1, Lab(p4) ≡ Wg

(see Figure 19). This diagram is called a computational sector corresponding to the
computation C.

In general by a sector we mean a reduced diagram Δ over the presentation of S
with boundary divided into four parts, ∂(Δ) = p

−1
1 p2p3p

−1
4 , such that the following

properties hold:

• Lab(p1),Lab(p3) are reduced group words in Θ+.
• Lab(p2),Lab(p4) are admissible words.

The following lemma is essentially [29, Proposition 9.1].

Lemma 4.4. Every sector is combinatorially homotopic (even without insertions of
cancelable cells) to a computational sector corresponding to a reduced computation
connecting Lab(p2) with Lab(p4). The history of that computation is Lab(p1) ≡
Lab(p3).
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4.2. Four S-machines.

4.2.1. The S-machines S1, S2. By Lemma 3.5, the set of words U(R) = {U(μ(r)) |
r ∈ R} is recursive (see the notation in Remark 3.6). Let S1 be an S-machine
recognizing that set of words and satisfying the conditions of Proposition 4.2.

Let S2 be an S-machine recognizing the set R written in the copy Â of A and
satisfying the conditions of Proposition 4.2. By splitting the state letters (i.e.
replacing in admissible words and in all rules a state letter q by a product of new
state letters q′q′′, we can assume that input bases (see Remark 4.1) of S1 and S2

are the same words and that the set of state letters of Si has m parts, i = 1, 2.
The tape alphabet of S1 is Z(S1) = Z1 ∪ . . . ∪ Zm−1 (we shall assume, without

loss of generality, that Z1 = ∅); the state alphabet is Q(S1) = Q1 � . . . �Qm. The

tape alphabet of S2 is Z(S2) = Ẑ1 ∪ . . .∪ Ẑm−1 (we shall assume that Ẑ2 = ∅); the
state alphabet is Q(S2) = Q̂1 � . . . � Q̂m.

We shall assume that A ∪ B is contained in Z2; there exists an injective map ε
from A to Ẑ1. The input word of S1 corresponding to a word w in the alphabet
A ∪B has the form

I1(w) ≡ q1q2wq3 . . . qm

(the word w is between q2 and q3; there are no more tape letters in that word).
The input word of S2 corresponding to a word w in the alphabet A is

I2(w) ≡ q1ε(w)q2q3 . . . qm.

Thus the input bases of these S-machines are the same: q1 . . . qm. We shall also
assume that Qi ∩ Q̂i = {qi}: Qi and Q̂i do not share letters except the state letters
qi of the input bases. The stop words of S1 and S2 are denoted by W0(S1) and
W0(S2), respectively.

Pick a number N ≥ 12 and consider two new S-machines S̄1 and S̄2.

4.2.2. The S-machine S̄1. For each i = 1, . . . , 2N let Z(i) be a disjoint copy of Z,
and let Q(i) be a disjoint copy of Q. Then the tape alphabet of S̄1 is

Z(S̄1) = (Z
(1)
1 ∪ . . . ∪ Z

(1)
m−1) ∪ ∅ ∪ ∅ ∪ (Z

(2)
m−1 ∪ . . . ∪ Z

(2)
1 ) ∪ ∅∪

. . .

∪(Z(2N−1)
1 ∪ . . . ∪ Z

(2N−1)
m−1 ) ∪ ∅ ∪ ∅ ∪ (Z

(2N)
m−1 ∪ . . . ∪ Z

(2N)
1 ) ∪ ∅;

the state alphabet is

Q(S̄1) = (Q
(1)
1 � . . . �Q

(1)
m ) � {k1, k̄1} � (Q

(2)
m � . . . �Q

(2)
1 ) � {t1}�

. . .

�(Q(2N−1)
1 � . . . �Q

(2N−1)
m ) � {kN , k̄N} � (Q

(2N)
m � . . . �Q

(2N)
1 ) � {tN}.

The admissible words of the S-machine S̄1 are described as follows. For every
word W in Z(S1) ∪ Q(S1) let W

(i) be the corresponding copy of that word in the

alphabet Z(S1)
(i) ∪Q(S1)

(i). Also for every word W let
←−
W be word W read from

right to left. If W is an admissible word of S1 which is not an input word, then the
corresponding admissible word of S̄1 has the form

W (S̄1) ≡ W (1)k̄1
←−
W (2)t1W

(3)k̄2
←−
W (4) . . . tN−1W

(2N−1)k̄N
←−
W (2N)tN .
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If I(u) is an input word, then the corresponding admissible word of S̄1 is

Ī(u) ≡ I(u)(1)k1
←−−
I(u)(2)t1I(u)

(3)k2
←−−
I(u)(4) . . . tN−1I(u)

(2N−1)kN
←−−
I(u)(2N)tN

(in this case the k-letters are ki instead of k̄i).
The stop word of S̄1, which will be called the first hub, is W0(S̄1), the admissible

word of S̄1 corresponding to the stop word W0 of S1. The rules of S̄1 naturally
correspond to the rules of S1: if θ = [U1 → V1, . . . , Un → Vn] is not the transition
rule of S1 which we shall denote by τ1 (see Remark 4.1), then the corresponding
rule θ̄ of S̄1 is

(4.1) θ̄ =

⎡
⎢⎢⎢⎢⎢⎣

U
(1)
1 → V

(1)
1 , . . . , U

(1)
n → V

(1)
n , k1 → k1,←−

Un
(2) → ←−

Vn
(2), . . . ,

←−
U1

(2) → ←−
V1

(2), t1 → t1,
. . .

U
(2N−1)
1 → V

(2N−1)
1 , . . . , U

(2N−1)
n → V

(2N−1)
n , kN → kN ,

←−
Un

(2N) → ←−
Vn

(2N), . . . ,
←−
U1

(2N) → ←−
V1

(2N), tN → tN

⎤
⎥⎥⎥⎥⎥⎦
.

Thus the rule θ̄ simultaneously executes copies of the rule θ on all (Q
(i)
1 , Q

(i)
m )-

subwords of an admissible word, i = 1, . . . , 2N . Essentially S̄1 runs simultaneously

N copies of S1, which we denote by S(2i−1)
1 , i = 1, . . . , N , and N copies of the

mirror images
←−S (2i)

1 of S1, i = 1, . . . , N .
If θ is the transition rule τ1 = [q1 . . . qm → q̃1 . . . q̃m], then the corresponding

transition rule S̄1 is

(4.2) τ̄1 =

⎡
⎢⎢⎢⎢⎢⎣

q
(1)
1 . . . q

(1)
m → q̃

(1)
1 . . . q̃

(1)
m , k1 → k̄1,

q
(2)
m . . . q

(2)
1 → q̃

(2)
m . . . q̃

(2)
1 , t1 → t1,

. . .

q
(2N−1)
1 . . . q

(2N−1)
m → q̃

(2N−1)
1 . . . q̃

(2N−1)
m , kN → k̄N ,

q
(2N)
m . . . q

(2N)
1 → q̃

(2N)
m . . . q̃

(2N)
1 , tN → tN

⎤
⎥⎥⎥⎥⎥⎦

(that is, the rule changes all q
(i)
j to q̃

(i)
j and all ki to k̄i).

4.2.3. The S-machine S̄2. This machine is constructed using S2 in a way similar to
how S̄1 is constructed from S1 except that the set of rules is constructed somewhat
differently.

For each i = 1, . . . , 2N let Ẑ(i) be a disjoint copy of Ẑ, and let Q̂(i) be a disjoint
copy of Q̂. We identify Ẑ(1) with Ẑ. Then the tape alphabet of S̄2 is

Z(S̄2) = ∅ ∪ . . . ∪ ∅︸ ︷︷ ︸
m−1

∪∅ ∪ ∅ ∪ (Ẑ
(2)
m−1 ∪ . . . ∪ Ẑ

(2)
1 ) ∪ ∅

∪(Ẑ(3)
1 ∪ . . . ∪ Ẑ

(3)
m−1) ∪ ∅ ∪ ∅ ∪ (Ẑ

(4)
m−1 ∪ . . . ∪ Ẑ

(4)
1 ) ∪ ∅

. . .

�(Ẑ(2N−1)
1 ∪ . . . ∪ Ẑ

(2N−1)
m−1 ) ∪ ∅ � ∅ ∪ (Ẑ

(2N)
m−1 ∪ . . . ∪ Ẑ

(2N)
1 ) ∪ ∅;

the state alphabet is

Q(S̄2) = (Q̂
(1)
1 � . . . � Q̂

(1)
m ) � {k1, k̂1} � (Q̂

(2)
m � . . . � Q̂

(2)
1 ) � {t1}�

. . .

�(Q̂(2N−1)
1 � . . . � Q̂

(2N−1)
m ) � {kN , k̂N} � (Q̂

(2N)
m � . . . � Q̂

(2N)
1 ) � {tN}.

The description of the admissible words of S̄2 is the following. For every word W in
the alphabet Ẑ∪Q̂ let W (i) be the corresponding copy of that word in the alphabet
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Ẑ(i)∪Q̂(i). For every word W in the alphabet Ẑ∪Q̂ let q(W ) ≡ WQ̂ be the word W

with all letters from Ẑ deleted (the projection of W onto Q̂). If W is an admissible
word of S2 but not an input word, then the corresponding admissible word of S̄2

has the form

W (S̄2) ≡ q(W (1))k̂1
←−
W (2)t1W

(3)k̂2
←−
W (4) . . . tN−1W

(2N−1)k̂N
←−
W (2N)tN .

The admissible word Ī2(u) corresponding to the input word I2(u) of S2 is

q(I2(u))k1
←−−−
I2(u)

(2)t1I2(u)
(3)k2

←−−−
I2(u)

(4) . . . tN−1I2(u)
(2N−1)kN

←−−−
I2(u)

(2N)tN .

The stop word of S̄2 is the word W0(S̄2) which will be called the second hub.
The rules of S̄2 correspond to rules of S2. If θ = [U1 → V1, . . . , Un → Vn] is a rule

of S2 but not the transition rule, which we shall denote τ2, then the corresponding
rule θ̄ of S̄2 is (compare with (4.1))

(4.3) θ̄ =

⎡
⎢⎢⎢⎢⎢⎣

q(U
(1)
1 )

�→ q(V
(1)
1 ), . . . , q(U

(1)
n )

�→ q(V
(1)
n ), k̂1 → k̂1,←−

Un
(2) → ←−

Vn
(2), . . . ,

←−
U1

(2) → ←−
V1

(2), t1 → t1,
. . .

U
(2N−1)
1 → V

(2N−1)
1 , . . . , U

(2N−1)
n → V

(2N−1)
n , k̂N → k̂N ,

←−
Um

(2N) → ←−
Vm

(2N), . . . ,
←−
U1

(2N) → ←−
V1

(2N), tN → tN

⎤
⎥⎥⎥⎥⎥⎦
.

Thus the S-machine S̄2 does not insert of delete any tape letters in the (Q
(1)
1 , Q

(2)
m )-

subwords of admissible words. If θ is the transition rule τ2 = [q1 . . . qm → q̃1 . . . q̃m],
then the corresponding transition rule of S̄2 is

τ̄2 =

⎡
⎢⎢⎢⎢⎢⎣

q
(1)
1 . . . q

(1)
m → q̃

(1)
1 . . . q̃

(1)
m , k1 → k̂1,

q
(2)
m . . . q

(2)
1 → q̃

(2)
m . . . q̃

(2)
1 , t1 → t1,

. . .

q
(2N−1)
1 . . . q

(2N−1)
m → q̃

(2N−1)
1 . . . q̃

(2N−1)
m , kN → k̂N ,

q
(2N)
m . . . q

(2N)
1 → q̃

(2N)
m . . . q̃

(2N)
1 , tN → tN

⎤
⎥⎥⎥⎥⎥⎦
.

4.3. The composition of the S-machines and the auxiliary group. Let A
be the generating set of our group Γ. Let A ∪ B ∪ X ∪ Y be the generating set
of H(A). For every i = 1, . . . , 2N we define copies A(i), B(i), X(i), Y (i) of the sets
A,B,X, Y , and the generating set of the group H(i)(A). The relations of H(i)(A)
are the relations of H(A(i)) if i is odd. If i is even, then the relations of H(i)(A) are
obtained from the relations of H(A(i)) by reading them from right to left. Clearly,
there exists an isomorphism from H(i)(A) onto H(A(i)) for even i given by the map
z �→ z−1.

We add the generators X(i), Y (i) and relators of all groups H(i)(A) to the already
introduced generators and relators. In addition we shall need all relations of the
form
(4.4)

z(2i−1)(q
(2i−1)
3 . . . q(2i−1)

m kiq
(2i)
m . . . q

(2i)
3 ) = (q

(2i−1)
3 . . . q(2i−1)

m kiq
(2i)
m . . . q

(2i)
3 )z(2i)

for all z ∈ X ∪ Y , and all relations of the form

(4.5) ε(a)(2i−1)q
(2i−1)
2 = q

(2i−1)
2 u(2i−1)

a v(2i−1)
a
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for all a ∈ A, i = 1, . . . , N , where uava = μ(a) is the generator of the subgroup E
corresponding to a ∈ A

(4.6) q
(2i)
2 ε(a)(2i) = ←−va(2i)←−ua

(2i)q
(2i)
2

for all a ∈ A, i = 1, . . . , N .

4.4. The group G.

Definition 4.5. The group G is the group given by the defining relations from
Sections 4.2.2, 4.2.3, 4.3 and the two hub relations W0(S̄1) = 1 and W0(S̄2) = 1.
Thus the finite presentation of G consists of

• defining relations of S̄i, i = 1, 2 (called the S̄i-relations),
• the defining relations of H(i)(A) (called the H(i)(A)-relations),
• the relations (4.4) (called the gluing ki-relations),

• the relations (4.5) and (4.6) (called the conjugacy q
(i)
2 -relations),

• the two hub relations

(4.7) W0(S̄1) = 1, W0(S̄2) = 1.

The role played by each of these relations will be clear in Section 5.1.

5. The main result

We are going to prove the following theorem. Recall that ε is an injective map
from A to Ẑ1. We shall identify Ẑ with Ẑ(1) ⊂ G.

Theorem 5.1. (1) The map ε : A → G extends to a homomorphism Γ → G which
will be denoted by ε as well.

(2) The homomorphism ε is injective.
(3) If the presentation 〈A | R〉 of Γ is combinatorially aspherical, then the (finite)

presentation of G is combinatorially aspherical.

5.1. The map ε is a homomorphism. Part (1) of Theorem 5.1 is given by the
following lemma.

Lemma 5.2. For every r ∈ R, ε(r) = 1 in G.

Proof. To prove the lemma, we build a van Kampen diagram for the relation ε(r) =
1 for every r ∈ R. That van Kampen diagram will be denoted by Ψ(r) and will be
called standard. Since this diagram is important, we will describe a step-by-step
procedure of constructing it.

Step 1. Using H(A)-relations and conjugacy relations, construct a van Kampen
diagram for the equality q−1

2 ε(r)q2 = U(r)V (r) (i.e. with the boundary label
q−1
2 ε(r)q2(U(r)V (r))−1; see Figure 20).

Step 2. Take N copies of the diagram from Step 1 and N copies of the mirror image
of this diagram and glue them using the gluing relations (see Figure 21). For the
sake of brevity, we did not include upper indexes of letters; the upper indexes of
letters to the left of ki are 2i− 1, and the upper indexes of letters to the right of ki
are 2i.
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ε(r)
V (r)

U(r)

μ(r)

q2

q2

Figure 20. The van Kampen diagram for the equality
q−1
2 ε(r)q2 = U(r)V (r).

ε(r) ε(r)

U(r) U(r)

μ(r) μ(r)

q2 q2

q2q3 . . . qmkiqm . . . q3q2

q3 . . . qmkiqm . . . q3

V (r) V (r)

Figure 21. Gluing a copy of the diagram on Figure 20 and a copy
of its mirror image.

Step 3. The machine S̄1 accepts I1(r). Therefore there exists a computational
sector (Figure 19; see [29]) whose upper side is labeled by I1(r), the lower side is
labeled by the stop word W0(S̄1), and the left and right sides are labeled by the
same word, the history h of accepting computation. Gluing together the left and
right sides and inserting the first hub into the hole of the resulting annular diagram
gives us the first disc. Similarly I2(r) is accepted by S̄2 and we can form the second
disc (see Figure 22).

Ij(r)

Wo(S̄j)

h h ⇒

Ij(r)

h

hub j

Figure 22. From a computational sector to a disc. Here j = 1, 2,
and h is the history of accepting computation.
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Step 4. Glue the diagrams obtained in Step 2 to the boundary of disc 1 and obtain
a new van Kampen diagram. Let us denote it Δ1 (see Figure 23).

. . .

k1 t1
k2

hub 1

. . .

Figure 23. Gluing diagrams from Step 2 to disc 1.

Step 5. The word written on the boundary of the diagram Δ1 obtained in Step 4
is equal to

q
(1)
1 ε(r)(1)q

(1)
2 . . . q

(1)
m k1q

(2)
m . . . q

(2)
2

←−−
ε(r)(2)t1

. . .

q
(2N−1)
1 ε(r)(2N−1)q

(2N−1)
2 . . . q

(2N−1)
m kNq

(2N)
m . . . q

(2N)
2

←−−
ε(r)(2N)tN .

This word can be obtained from the word Ī2(r) by inserting the word ε(r)(1) ≡ ε(r)

between q
(1)
1 and q

(1)
2 .

Let us identify the initial and terminal vertices of the subpath of the boundary
∂(Δ) labeled by ε(r). The result is an annular diagram with a boundary of the hole
labeled by ε(r) and the outside boundary labeled by Ī1(r) (see Figure 24). Let us
call the new (annular) diagram Δ′

1.

Now consider a sphere S2. Draw the diagram Δ′
1 on the sphere so that the outer

boundary of Δ′ coincides with the equator and the hub is on the north pole. Since
the labels of the outer boundary of the diagram Δ′ and of the boundary of disc
2 are the same, we can draw disc 2 on the southern hemisphere of our sphere, so
that the second hub is at the south pole and the boundary of disc 2 also coincides
with the equator. The result is a van Kampen diagram over the presentation of G
drawn on the sphere with a hole (i.e. a disc) and the label of the boundary of that
diagram is ε(r) as required. �
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. . .

k1 k1t1 t1
k2 k2

hub 1 hub 1
⇒

ε(r)

ε(r)

Ī1(r)

Ī2(r)

Ī2(r)

Figure 24. The northern hemisphere (with a hole labeled by ε(r)).

Notation 5.3. Let Ψ(r) be the diagram constructed in the proof of Lemma 5.2. It
contains two hubs π1 and π2 (located at the north and the south poles) connected
by t1-,. . . , tN - and k1-,. . . ,kN -bands (meridians). It is convenient to make the no-
tation independent on how we enumerate the hubs in Ψ(r), so we assume that π1

is a j-th hub and π2 is a (3 − j)-th hub (for some j = 1, 2). If i < N , then the
subdiagram bounded by the ti-band and the ki+1-band and ∂(T1), ∂(T2) is denoted
by Ψi(r). The subdiagram Ψi(r) contains two maximal transition θ-bands A1,A2.
The medians of these bands divide Ψi(r) into three parts Ψ

′
i(r),Ψ

′′
i (r),Ψ

′′′
i (r) count-

ing from π1 to π2. The first and the third subdiagrams are computational sectors

corresponding to the computation of S(2i+1)
j accepting I

(i+1)
j (U(r)) and the com-

putation of S(2i+1)
3−j accepting I

(i+1)
3−j (r), respectively, where j = 1 or 2 (recall that

i < N). The union of Ψ′
i(r)∪A1∪Ψ′′(r)∪A2 is denoted by Φi(r). The complement

of that subdiagram in Ψ(r) will be denoted by Φ̄i(r).

5.2. Expanded presentation of G. Let us denote the finite presentation of G
given in Section 4.4 by P and the presentation obtained from P by adding all
Γ-relations ε(r), r ∈ R, by P ′.

Notation 5.4. We shall study diagrams over P and P ′. We say that two diagrams
Δ1,Δ2 over P ′ are combinatorially P-homotopic if one can transform Δ1 to Δ2

using diamond moves and insertion and deletion of cancelable cells corresponding
to relations from P. If Δ is a diagram over P, we can consider the following bands
in Δ:

• θ-bands, θ ∈ Θ̄+
1 ∪ Θ̄+

2 , consisting of (θ, a), (θ, q)-, and (θ, k)-cells. These
bands can start and end on the boundary of Δ.

• Q
(j)
i -bands, i = 1, 3, 4, . . . ,m, j = 1, . . . , 2N , consisting of (Q,Θ)-cells and

gluing kj-cells (i = 3, . . . ,m). These bands can start (end) on the hub cells
and on the boundary of Δ.
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• Q
(j)
2 -bands, j = 1, . . . , 2N , consisting of (Q,Θ)-cells and conjugacy q

(i)
2 -

cells. These bands can start (end) on the hub cells and on the boundary of
Δ.

• ki-bands consisting of (ki,Θ)-cells and gluing ki-cells. These bands can
start (end) on the hub cells and on the boundary of Δ.

• ti-bands consisting of (ti,Θ)-cells. These bands can start (end) on the hub
cells and on the boundary of Δ.

• Z-bands consisting of (Z,Θ)-cells, (A(i), X(i))-cells, and (A(i), Y (i))-cells.
These bands can start (end) on the boundary of Δ or on a (Q, θ)-cell or on

a conjugacy q
(i)
2 -cell.

• X(i)-bands consisting of (A(i), X(i))- and (B(i), X(i))-cells. These bands
can start (end) on the boundary of Δ or on the boundary of a ki-gluing cell

or on the boundary of a q
(i)
2 -conjugacy cell.

Notation 5.5. Let Δ be a reduced diagram having two hubs π1, π2 connected by
a ti-band X1 and a ki+1-band X2 where 1 ≤ i < N . Suppose that Ψ is bounded
by a side of X1, a side of X2, and parts of ∂π1, ∂π2 and does not contain hubs
except for π1, π2. We shall call such a diagram a 2-hub i-diagram. The subdiagram
obtained from Δ by removing π1, π2,X1,X2 is denoted by Δ′ and is called the inside
subdiagram of Δ. The band X2 consists of (ki+1, θ)-cells, transition cells, and gluing
ki+1-cells. The number of transition cells in K will be called the complexity of Δ.

Note that the diagram Ψi(r) from Notation 5.3 is a 2-hub i-diagram of complexity
2.

Notation 5.6. Let us define several groups given by subpresentations of P ′.

1. For every j = 2, . . . , N , let K
(j)
1 be the group given by all the relations of

H(2j−1)(A) and the conjugacy q
(2j−1)
2 -relations.

2. For every j = 1, . . . , N let K
(j)
2 be the group given by all the relations of

←−
H (2i)(A) and the conjugacy q

(2j)
2 -relations.

3. For every j = 2, . . . , N let K(j) be the group given by all the relations of

K
(j)
i , i = 1, 2, and the gluing kj-relations.

4. Let K
(1)
1 be the group given by all the relations of H(1)(A), defining rela-

tions of ε(Γ), and the conjugacy q
(1)
2 -relations.

5. Let K(1) be the group given by all the relations of K
(1)
1 , relations of K

(1)
2 ,

and the gluing k1-relation.
6. Let K be the free product of all K(i), i = 1, . . . , N .

Clearly, the presentation of K is a subpresentation of P ′.

Lemma 5.7. For every j = 2, . . . , N , the set X(2j−1) ∪ Y (2j−1) freely generates a

free subgroup in the group K
(j)
1 .

Proof. Indeed, that group is an HNN-extension of the free product of H(2j−1) ∗
〈ε(A)(2j−1)〉 (the second factor is a free group generated by ε(A)(2j−1)) with free

letter q
(2j−1)
2 and associated subgroups generated by sets ε(A)(2j−1) and μ(A)(2j−1),

respectively. Both sets freely generate free subgroups in the free product by the
definitions of ε and μ. �

The following lemma is proved in the same way as Lemma 5.7
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Lemma 5.8. For every j = 1, . . . , N , the set X(2j) ∪ Y (2j) freely generates a free

subgroup in the group K
(j)
2 .

Lemma 5.9. For every j = 2, . . . , N , K(j) is constructed as follows. First take the

HNN-extension K̂(j) of the free product of K
(j)
1 ∗K(1)

2 with free letter k̂j and free

associated subgroups generated by X(2j−1)∪Y (2j−1) and X(2j)∪Y (2j), respectively.
Then K(j) is an amalgamated product of K̂(j) and the free group freely generated

by q
(2j−1)
3 , . . . , q

(2j−1)
m , km, q

(2j)
3 , . . . , q

(2j)
m with cyclic associated subgroups generated

by k̂j and q
(2j−1)
3 . . . q

(2j−1)
m kjq

(2j)
m . . . q

(2j)
3 , respectively.

Proof. This immediately follows from the definition of K(j) and Lemmas 5.7 and
5.8. �
Lemma 5.10. The group K(1) is constructed as follows. First take the HNN-

extension K̂(1) of the free product of H ′(Γ) ∗ K
(1)
2 with free letter k̂1 and free as-

sociated subgroups freely generated by X(1) ∪ Y (1) and X(2) ∪ Y (2), respectively.
Then K(1) is an amalgamated product of K̂(1) and the free group freely generated

by q
(1)
3 , . . . , q

(1)
m , k1, q

(2)
3 , . . . , q

(2)
m with cyclic associated subgroups generated by k̂1

and q
(1)
3 . . . q

(1)
m k1q

(2)
m . . . q

(2)
3 , respectively.

Proof. Indeed, the group K
(1)
1 is clearly isomorphic toH ′(Γ). Then by Lemma 3.19,

the group H(A)/N naturally embeds into K
(1)
1 where N is the normal subgroup of

H(A) generated by μ(R) (see Lemma 3.19). This, the second equality of Lemma
3.16, and Lemma 3.21 imply that the sets X(1)∪Y (1) and X(2)∪Y (2) freely generate

free subgroups of K
(1)
1 and K

(2)
2 , respectively. Then it is clear that the presentation

of K̂(1) is the standard presentation of the HNN-extension and the presentation of
K(1) is the standard presentation of an amalgamated product. �
Lemma 5.11. The set

⋃
(A(j) ∪B(j)) generates a free subgroup in K.

Proof. This immediately follows from Lemmas 3.3, 3.16, and 3.19. �
Lemma 5.12. Let Δ be a reduced diagram over P ′ without hubs. Then it does not
have Θ-annuli.

Proof. Suppose that Δ is a counterexample with the smallest number of cells and
that T is a Θ-annulus in Δ. Let Δ′ be the inside subdiagram of T .

Since ∂Δ′ does not contain Θ-edges, Δ′ does not have any cells corresponding to
the defining relations of S̄i, i = 1, 2 (because Δ′ has fewer cells than Δ). Therefore
Δ′ is a diagram over the presentation of the group K (since Δ does not contain
hubs and all other relations have been ruled out). Note that different cells of T
cannot have non-Θ-edges in common; otherwise they cancel. Hence every cell in
T has a common edge with a cell corresponding to a relation of K. Therefore T
corresponds to a transition rule of S1 or of S2.

In the first case the boundary label of Δ′ is a word in

2N⋃
i=1

(A ∪B)i ∪
2N⋃
i=1

{q(i)1 , . . . , q(i)m } ∪ {k1, . . . , kN}.

In the second case it is a word in
2N⋃
i=2

ε(A)(i) ∪
2N⋃
i=1

{q(i)1 , . . . , q(i)m } ∪ {k1, . . . , kN}.
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We claim that both sets freely generate free subgroups in K. Indeed, since K is a
free product, it is enough to show that the set

(5.1) A(2i−1)∪B(2i−1)∪{q(2i−1)
1 , . . . , q(2i−1)

m }∪{ki}∪A(2i)∪B(2i)∪{q(2i)1 , . . . , q(2i)m },

the set

(5.2) ε(A)(2i−1) ∪ {q(2i−1)
1 , . . . , q(2i−1)

m } ∪ {ki} ∪ {q(2i)1 , . . . , q(2i)m } ∪ ε(A)(2i), i ≥ 2,

and the set

(5.3) {q(1)1 , . . . , q(1)m } ∪ {k1} ∪ {q(2)1 , . . . , q(2)m } ∪ ε(A)(2)

freely generate a free subgroup in the corresponding K(i), i = 1, . . . , N . For the
set (5.1) it follows the representation of K(i) as an amalgamated product (Lemmas
5.9 and 5.10) and Lemma 3.3 if i ≥ 2 and Lemmas 3.3 and 3.16 if i = 1. For the
sets (5.2) and (5.3) it follows from the representation of K(i) as an amalgamated
product, the fact that the subgroup E of H(A) is freely generated by μ(a), a ∈ A
(by construction), and the fact that the set ε(A)(j) is conjugated to the set μ(A)(j)

in K
(j)
i where i = 1, j ≥ 2 or i = 2, j ≥ 1 by q

(j)
2 .

The claim shows that the inner boundary of T has freely trivial label; hence T
has two cells that cancel, a contradiction. �

Lemma 5.13. Let Δ be a reduced diagram over P ′ without hubs and θ-edges. Then
Δ does not have k1-annuli.

Proof. Suppose that Δ contains a k1-annulus T . Let Δ′ be the inside diagram of
that annulus. Note that ∂Δ′ consists of X(1)∪Y (1)-edges. Since Δ does not contain
hubs and Θ-edges, it is a diagram over the presentation of K. Using the fact that
K is a free product, we conclude that it is a diagram over K(1). But by Lemma
5.10, X(1) ∪Y (1) freely generates a free subgroup in K(1). Hence the label of ∂Δ is
freely trivial, and so T is not reduced, a contradiction. �

Lemma 5.14. Suppose that Δ is a reduced diagram over P ′ without tj-edges on
the boundary, j = 1, . . . , N . Suppose that Δ contains a hub. Then there exists a
hub π1 in Δ and an i < N such that the ti-band T1 and the ti+1-band T2 starting
on ∂π1 end on the boundary of another hub π2 of Δ and there are no hubs in the
subdiagram bounded by the medians of T1, T2 and the parts of ∂π1, ∂π2 connecting
the start edges of T1, T2 and not containing t-edges.

Proof. Indeed, since Δ does not contain tj-edges on the boundary, it must contain at
least two hubs. Consider the graph where vertices are hubs of Δ and edges are the tj-
bands connecting them. The boundary of a hub cell has labelW0(S̄i), i = 1, 2, which
has occurrences of N letters t1, . . . , tn. The corresponding edges on the boundary of
the hub are start edges ofN t-bands connecting the hub with other hubs. Thus every
vertex of this planar graph has degree N ≥ 12. By Lemma 3.13, there must be two
hubs connected by a ti- and tj-band, i < j. Therefore these two hubs are connected
by a ti-band and a ti+1-band. Consider all subdiagrams Δ′ of Δ bounded by two
hubs and two consecutive t-bands connecting them. Since the inside subdiagram
of such a subdiagram does not contain tj-edges on the boundary, a smallest area
subdiagram Δ′ of this form will satisfy the conditions of the lemma. �
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5.3. Sectors. Here we shall generalize Lemma 4.4.

Lemma 5.15. Suppose that a reduced diagram Δ over P ′ without hubs has bound-
ary

pqr
−1

s
−1

where p and r are sides of a ti- and a ki+1-band T1, T2, respectively, and Lab(p)
and Lab(r) do not contain transition rules τ̄±1

1 , Lab(q) ≡ tiW1k̄i+1 and Lab(s) ≡
tiW2k̄i+1 where W1,W2 are admissible words of S(2i+1)

1 for some i = 1, . . . , N − 1.
Then the subdiagram of Δ bounded by the median of T1, the median of T2, q, s is

combinatorially P-homotopic to a computational sector of S(2i+1)
1 .

Proof. By Lemma 5.12 every Θ-band in Δ starts on p or on r. Suppose that a Θ-
band starts and ends on p. Since Θ-bands do not intersect, there exists a Θ-band
A whose start and end edges belong to the neighbor cells of T1. Then these cells
cancel, a contradiction.

Similarly a Θ-band cannot start and end on r. Therefore Θ-bands that start on
p (on r) end on r (on p). Let A1, A2 be two consecutive Θ-bands in Δ. These
bands start on two consecutive Θ-edges of p and end on two consecutive Θ-edges of
r. The boundary of the subdiagram Δ′ bounded by the medians of A1,A2 and p, r
consists of edges with labels in Z ∪ Q. The subdiagram Δ′ does not contain hubs
and Θ-edges, so it is a diagram over the presentation of K. Therefore the boundary
label of Δ′ is freely trivial, and Δ′ does not contain cells.

Hence all cells in Δ correspond to relations of S̄1. It remains to use Lemma
4.4. �

The following lemma is proved in the same way as Lemma 5.15.

Lemma 5.16. Suppose that a reduced diagram Δ over P ′ without hubs has bound-
ary

pqr−1s−1

where p and r are sides of a ti- and a ki+1-band T1, T2, respectively, and Lab(p)

and Lab(r) do not contain transition rules τ̄±1
2 , Lab(q) ≡ tiW1k̂i+1 and Lab(s) ≡

tiW2k̂i+1 where W1,W2 are admissible words of S(2i+1)
2 for some i = 1, . . . , N − 1.

Then the subdiagram of Δ bounded by the median of T1, the median of T2, q, s is

combinatorially P-homotopic to a computational sector of S(2i+1)
2 .

5.4. Diagrams with boundary label over ε(A).

Lemma 5.17. Let Δ be a diagram over P ′ without hubs. Then it does not contain
(Θ, ki)-annuli, N > i ≥ 1.

Proof. Suppose that there exists a (Θ, k)-annulus T in Δ composed of a Θ-band
A and a k-band B. Since Θ-bands do not intersect, we can assume that the inside
diagram Δ′ of T does not have Θ-edges (by Lemma 5.12). Therefore Δ′ is a diagram
over the presentation of the group K.

Suppose that Δ′ contains kj-edges. Then it contains a kj-annulus for some j. By
Lemma 5.13, j > 1. Consider an innermost such annulus. The reduced boundary
label of its inside diagram is a word in X(s) ∪ Y (s) for some s > 1. But X(s) ∪ Y (s)

freely generates a free subgroup of K by Lemma 3.3, so that annulus contains two
cells that cancel. Hence Δ′ does not contain kj-edges.
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Therefore Δ′ is a diagram over the presentation of one of theH(A)(s), s > 1. The
label of the boundary of Δ′ is then a product UV where U is a word in A(i) ∪B(i)

and V is a word in X(i)∪Y (i). By Lemma 3.3, U = V = 1 in the free group. Hence
either A or B contains two cells that cancel, a contradiction. �
Lemma 5.18. Let Δ be a reduced diagram over the presentation P ′ with ∂Δ con-
sisting of ε(A)-edges (that includes the case when Δ is spherical). Suppose that
Δ does not contain hubs. Then Δ is combinatorially P-homotopic to a diagram
consisting of Γ-cells.

Proof. Suppose that Δ contains Θ-edges. Then by Lemma 5.12, ∂Δ contains Θ-
edges, a contradiction. Hence all cells in Δ correspond to the relations of K. Since
K is a free product of K(i), i = 1, . . . , N , and the boundary label is in K(1), all cells
in Δ correspond to relations of K(1) (consider a maximal subdiagram consisting of
cells corresponding to relations of other free factors; all the boundary components
of that subdiagram must be empty). By Lemma 5.13, Δ does not contain k1-edges.

Hence Δ is a diagram over the presentation of the free product of K
(1)
1 and K

(1)
2 .

Since the boundary label in Δ is from K
(1)
1 , all cells in Δ correspond to relations

of K
(1)
1 which is a copy of H ′(Γ). It remains to use the first statement of Lemma

3.21. �
A not necessarily reduced diagram over P ′ is called normal if every hub is con-

tained in a standard subdiagram (i.e. subdiagram of the form Ψ(r), r ∈ R; see No-
tation 5.5), standard subdiagrams do not share cells, and every 2-hub i-subdiagram
is reduced, i < N .

Lemma 5.19. Let 1 ≤ i < N . Then every reduced 2-hub i-diagram Δ (see Notation
5.5) over P ′ is combinatorially P-homotopic to a normal diagram.

Proof. Suppose first that the complexity of Δ is 0. Then both hubs in Δ are first
hubs or both of them are second hubs. Assume both are first hubs. By Lemma
5.15, the subdiagram of Δ bounded by the medians of X1,X2 and parts of the
boundaries of the hubs (and not containing the hubs) is combinatorially homotopic

to a computational sector of S(2i+1)
1 . By Proposition 4.2(4), that computation is

empty, so T1 and T2 are empty, and the two hubs in Δ cancel, a contradiction.
The case when both hubs are second hubs is similar except that one needs to use
Lemma 5.16 instead of 5.15.

Suppose now that Δ has complexity ≥ 1. Let A1 be the first transition Θ-band
in Δ counting from π1 to π2.

Case 1. Let us assume that π1 is the first hub.
Then A1 must be a τ̄1-band (since the letter in Lab(π1) from {k̃i+1, ki+1, k̂i+1}

is k̃i+1 and relations involving τ̄2 do not contain that letter). The side of A1 that
is further from π1 must contain ki+1. Hence the Θ-band A2 which is next after A1

in Δ (counting from π1 to π2) must be either a τ̄−1
1 -band or τ̄−1

2 -band. The first
option is impossible because A1 and A2 intersect T1 in two neighbor cells, and if
the first option occurs, these cells cancel, which would contradict the assumption
that Δ is reduced. Thus A2 is a τ̄−1

2 -band.
The medians of A1 and A2 cut the diagram Δ into three parts (see the top part

of Figure 25): Δ1, Δ2,Δ3 where Δ1 contains π1, Δ3 contains π2. Let Δ′
1 be the

diagram Δ1 without the hub cell. Note that the boundary of Δ′
1 has the form
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π1 π2

π1 π2

Δ1 Δ2 Δ3

Δ1 Δ2 Δ3

Ψ(r)
Φ̄i(r)

−1

A1 A2

A1 A2

X1

X2

Figure 25

pqr−1s−1 where p, r are sides of a ti- and ki+1-band, respectively, not containing

transition cells, Lab(q) ≡ W0(S(2i+1)
1 ),

Lab(s) ≡ tiq̃
(2i+1)
1 q̃

(2i+1)
2 Uq̃

(2i+1)
3 . . . q̃(2i+1)

m k̃i+1

where U is a word in Z
(2i+1)
2 . By Lemma 5.15, that diagram without the ti-band

and the ki+1-band is combinatorially P-homotopic to a computational sector corre-

sponding to a computation of S(2i+1)
1 accepting the word q̃

(2i+1)
1 q̃

(2i+1)
2 Uq̃

(2i+1)
3 . . .

q̃
(2i+1)
m . By the choice of the S-machine S1, then U is a copy of U(r) for some r ∈ R,
and by Lemma 4.2(3), the diagram Δ1 is uniquely determined (up to P ′-homotopy)
by r.

The ki+1-band in Δ2 consists of gluing ki+1-cells. Indeed, no (Θ, ki+1)-relation

except transition cells involves letter ki+1 (they involve letters k̃i+1 and k̂i+1) and
the ki+1-band in Δ2 does not contain Θ-edges by Lemma 5.17.

Let Δ′
2 be the diagram obtained from Δ2 by removing the ki+1-band and the

maximal q
(2i+1)
2 -band started on ∂Δ2. By Lemma 5.17 that ki+1-band does not

contain Θ-edges. Since the intersections of A1,A2 with the ti-band X1 (resp. with

the maximal Q
(2i+1)
1 -band starting on ∂Δ2) are neighbor cells on this band, the

boundary of diagram Δ′
2 has the form q1r

−1
1 s−1 where Lab(q1) = U(r), Lab(r1) is

a word in X(2i+1) ∪ Y (2i+1), Lab(s) is a product of words of the form μ(a)(2i+1),
a ∈ A. By Lemma 3.17, the diagram Δ′

2 is determined by the word U(r) up to
combinatorial P-homotopy. Therefore the diagram Δ2 is determined by r up to
combinatorial P-homotopy (and is homotopic to Υ(μ(r))).

Case 2. Now assume that π1 is the second hub.

Then A1 must be a τ̄2-band (since the letter in Lab(π1) from {k̃i+1, ki+1, k̂i+1}
is k̂i+1 and relations involving τ̄1 do not contain that letter). The side of A1 that
is further from π1 must contain ki+1. Similarly to the previous case, the next after
A1 Θ-band A2 in Δ (counting from π1 to π2) is a τ̄−1

1 -band.
As in Case 1, the medians of A1 and A2 cut the diagram Δ into three parts

Δ1, Δ2,Δ3 where Δ1 contains π1, Δ3 contains π2. Let Δ′
1 be the diagram Δ1

without the hub cell. Note that the boundary of Δ′
1 has the form pqr−1s−1 where
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p, r are sides of a ti- and ki+1-band, respectively, not containing transition cells,

Lab(q) ≡ W0(S(2i+1)
1 ),

Lab(s) ≡ tiq̃
(2i+1)
1 q̃

(2i+1)
2 Uq̃

(2i+1)
3 . . . q̃(2i+1)

m k̃i+1

where U is a word in Z
(2i+1)
2 . By Lemma 5.16, that diagram without the ti-band

and the ki+1-band is combinatorially P-homotopic to a computational sector corre-

sponding to a computation of S(2i+1)
2 accepting the word q̂

(2i+1)
1 Uq̂

(2i+1)
2 q̂

(2i+1)
3 . . .

q̂
(2i+1)
m . By the choice of the S-machine S2, then U ≡ ε(r) for some r ∈ R, and by
Lemma 4.2(3), the diagram Δ1 is uniquely determined (up to P ′-homotopy) by r.

As in Case 1, the ki+1-band in Δ2 consists of gluing ki+1-cells. Let Δ′
2 be the

diagram obtained from Δ2 by removing the ki+1-band and the maximal q
(2i+1)
2 -

band started on ∂Δ2. By Lemma 5.17 that ki+1-band does not contain Θ-edges.
Since the intersections of A1,A2 with the ti-band X1 (resp. with the maximal

Q
(2i+1)
1 -band starting on ∂Δ2) are neighbor cells on this band, the boundary of

diagram Δ′
2 has the form q1r

−1
1 s−1 where Lab(q1) = U ′, Lab(r1) is a word in

X(2i+1) ∪ Y (2i+1), Lab(s) = μ(r). By Lemma 3.17, the diagram Δ′
2 is determined

by the word μ(r) up to combinatorial P-homotopy. Therefore the diagram Δ2 is
determined by r up to combinatorial P-homotopy (and is homotopic to Υ(μ(r))).

Thus in both cases we have proved that up to combinatorial homotopy the sub-
diagram Δ′′ = Δ1∪A1∪Δ2∪A2 of Δ coincides with the corresponding subdiagram
Φi(r) of the diagram Ψ(r) described in Notation 5.3.

Since diagrams Δ and Ψi(r) have a common subdiagram Δ′′, we can apply the
standard surgery described in Section 2.1.4: we cut Δ along the boundary of Δ′′,
insert into the resulting hole the diagram Φ̄i(r) (the complement of Φi(r) in Ψ(r);
see Notation 5.3) and its mirror image Φ̄1(r)

−1 so that Δ′′∪Φ̄i(r) is combinatorially
P-homotopic to Ψ(r), and the subdiagram Φ̄i(r) and its mirror image Φ̄i(r)

−1

cancel each other. The new diagram Δ̌, after a combinatorial P-homotopy, becomes
a union of a subdiagram that is a copy of Ψ(r), a 2-hub reduced i-subdiagram
of smaller complexity than Δ, and a number of non-hub cells corresponding to
relations of P (see the bottom part of Figure 25). This allows us to proceed by
induction on the complexity of the 2-hub i-subdiagram. �

Lemma 5.20. Let Δ be any reduced diagram over P whose boundary label is a
word in ε(A). Then Δ is combinatorially P-homotopic to a normal diagram that
coincides with the union of its standard subdiagrams.

Proof. Every normal diagram over P can be viewed as a diagram over P ′: ignore the
cells of standard subdiagrams and view these subdiagrams as Γ-cells (the standard
diagram Ψ(r) has boundary label ε(r) by Notation 5.3). Therefore if Δ does not
have hubs, we can apply Lemma 5.18. The combinatorial P-homotopy from Lemma
5.18 does not touch the Γ-cells (since P does not contain Γ-relations), so Δ is
combinatorially P-homotopic to a normal diagram.

Suppose that Δ has hubs. Consider the graph ∇ = ∇(Δ) whose vertices are
the hubs of Δ. Two hubs are adjacent if there exists a ti-band, i < N , connecting
them. Since no vertex is adjacent to itself and the graph is planar (ti-bands do not
intersect), we apply Lemma 3.13 again and conclude that ∇ has a vertex of degree
5. Since ∂Δ does not have ti-edges, there exist two hubs π1, π2 connected by a
ti-band and a tj-band, i < j < N (recall that N ≥ 12). Consider the subdiagram
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Δ′ of Δ bounded by the two hubs π1, π2 and the ti- and tj-band. Assume that
Δ′ is a smallest under inclusion such subdiagram of Δ. Suppose that Δ′ contains
hubs. Then the graph ∇(Δ′) contains a vertex of degree 5. By the minimality of
Δ′, no two hubs of Δ′ are connected by a ti′- and tj′-band, i′ < j′ < N . Hence
there exists a hub π3 ∈ Δ′ which has at least three of its tj-bands, j < N , each
connecting that hub with π1 or π2 (by the pigeon-hole property, since 11 > 2× 5).
Then either π1 or π2 is connected with π3 by two of these bands, which contradicts
the minimality of Δ′. Hence we can assume that Δ′ does not have hubs. Then the
ki+1-band starting on ∂π1 ends on ∂π2. Consider the subdiagram Δ′′ bounded by
π1, π2, the ti-band and the ki+1-band connecting them. Viewed as a diagram over
P ′ (we again consider standard subdiagrams as Γ-cells) Δ′′ is a 2-hub i-subdiagram
of Δ. By Lemma 5.19, this subdiagram is combinatorially P-homotopic to a normal
diagram. Replacing Δ′′ by that normal diagram, we obtain a diagram with the same
boundary label as Δ but with fewer hubs outside standard subdiagrams (note that
this homotopy does not touch cells outside Δ′′), so we can proceed by induction on
the number of hubs outside standard subdiagrams. �

The following two lemmas complete the proof of Theorem 5.1.

Lemma 5.21 (Part (2) of Theorem 5.1). The map ε : Γ → G is injective.

Proof. Suppose that for some word u in A, ε(u) = 1 in G. Then there exists a van
Kampen diagram Δ over P with boundary label ε(u). By Lemma 5.20, Δ is com-
binatorially homotopic to a normal diagram tesselated by standard subdiagrams.
If we view each of these subdiagrams as a Γ-cell, Δ becomes a diagram Δ1 over
the presentation 〈ε(A) | ε(R)〉. Applying ε−1 to the labels of Δ1, we obtain a van
Kampen diagram over the presentation of Γ with boundary label u. Hence u = 1
in Γ. �
Lemma 5.22 (Part (3) of Theorem 5.1). If the presentation 〈A | R〉 of Γ is com-
binatorially aspherical, then the presentation P of G is combinatorially aspherical.

Proof. Consider a spherical diagram Δ over P. It is a disc diagram with empty
boundary. By Lemma 5.20, Δ is combinatorially P-homotopic to a spherical normal
diagram Δ1 tesselated by standard subdiagrams. Again, view Δ1 as a spherical
diagram over the presentation of Γ. Since that presentation is aspherical by our
assumption, Δ1 can be combinatorially deformed to a trivial diagram by diamond
moves and insertions and deletions of cancelable standard subdiagrams. Therefore
Δ is combinatorially homotopic to a trivial diagram. �
Remark 5.23. It is possible to show, using the ideas from [2], that the embedding
constructed in this paper is quasi-isometric if we choose the number N large enough
(i.e. the subgroup ε(Γ) embeds without distortion) and preserves solvability of the
word problem. But the Dehn function of the finitely presented group G is almost
always superexponential: indeed, by Remark 3.7, the computational sector of S1

for the computation accepting U(r) has superexponential area in terms of |r| and
is a subdiagram in the van Kampen diagram for the relation ε(r) = 1 in G. D.
Osin asked whether one can embed every recursively presented group into a finitely
presented group as a malnormal subgroup. It is possible to prove that ε(Γ) em-
beds malnormally (regardless of whether Γ is aspherical or not), so the answer to
that question is affirmative. That will be proved in our next paper. It would be
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interesting to find out whether our construction preserves several other properties
including the finite decomposition complexity of Guentner, Tessera, and Yu [13].
Also notice that our Corollary 1.2 provides the only known potential counterexam-
ple to various versions of the Novikov and the Baum-Connes conjectures. It would
be interesting of course to find out if these are really counterexamples.
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[21] A. Yu. Ol′shanskĭı, SQ-universality of hyperbolic groups, Mat. Sb. 186 (1995), no. 8, 119–
132, DOI 10.1070/SM1995v186n08ABEH000063 (Russian, with Russian summary); English
transl., Sb. Math. 186 (1995), no. 8, 1199–1211. MR1357360 (97b:20057)

[22] Alexander Yu. Ol′shanskii, Denis V. Osin, and Mark V. Sapir, Lacunary hyperbolic groups,
Geom. Topol. 13 (2009), no. 4, 2051–2140, DOI 10.2140/gt.2009.13.2051. With an appendix
by Michael Kapovich and Bruce Kleiner. MR2507115 (2010i:20045)

[23] A. Yu. Ol′shanskii and M. V. Sapir, The conjugacy problem and Higman embeddings, Mem.
Amer. Math. Soc. 170 (2004), no. 804, viii+133. MR2052958 (2005f:20062)

[24] A. Yu. Ol′shanskii and M. V. Sapir, Groups with small Dehn functions and bipartite chord
diagrams, Geom. Funct. Anal. 16 (2006), no. 6, 1324–1376, DOI 10.1007/s00039-006-0580-9.
MR2276542 (2008k:20053)

[25] Joseph J. Rotman, An introduction to the theory of groups, 4th ed., Graduate Texts in
Mathematics, vol. 148, Springer-Verlag, New York, 1995. MR1307623 (95m:20001)

[26] Mark Sapir,Algorithmic and asymptotic properties of groups, International Congress of Math-
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