Entropy, determinants, and $L^2$-torsion
HTML articles powered by AMS MathViewer
- by Hanfeng Li and Andreas Thom
- J. Amer. Math. Soc. 27 (2014), 239-292
- DOI: https://doi.org/10.1090/S0894-0347-2013-00778-X
- Published electronically: July 23, 2013
- PDF | Request permission
Abstract:
We show that for any amenable group $\Gamma$ and any $\mathbb {Z} \Gamma$-module $\mathcal {M}$ of type FL with vanishing Euler characteristic, the entropy of the natural $\Gamma$-action on the Pontryagin dual of ${\mathcal {M}}$ is equal to the $L^2$-torsion of $\mathcal {M}$. As a particular case, the entropy of the principal algebraic action associated with the module $\mathbb {Z} \Gamma /\mathbb {Z} \Gamma f$ is equal to the logarithm of the Fuglede-Kadison determinant of $f$ whenever $f$ is a non-zero-divisor in $\mathbb {Z}\Gamma$. This confirms a conjecture of Deninger. As a key step in the proof we provide a general Szegő-type approximation theorem for the Fuglede-Kadison determinant on the group von Neumann algebra of an amenable group.
As a consequence of the equality between $L^2$-torsion and entropy, we show that the $L^2$-torsion of a nontrivial amenable group with finite classifying space vanishes. This was conjectured by Lück. Finally, we establish a Milnor-Turaev formula for the $L^2$-torsion of a finite $\Delta$-acyclic chain complex.
References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- Mladen Bestvina and Noel Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3, 445–470. MR 1465330, DOI 10.1007/s002220050168
- Patrick Billingsley, Convergence of probability measures, 2nd ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999. A Wiley-Interscience Publication. MR 1700749, DOI 10.1002/9780470316962
- Florin-Petre Boca, Rotation $C^{*}$-algebras and almost Mathieu operators, Theta Series in Advanced Mathematics, vol. 1, The Theta Foundation, Bucharest, 2001. MR 1895184
- Lewis Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217–245. MR 2552252, DOI 10.1090/S0894-0347-09-00637-7
- Lewis Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 703–718. MR 2794944, DOI 10.1017/S0143385710000179
- Lewis Bowen and Hanfeng Li, Harmonic models and spanning forests of residually finite groups, J. Funct. Anal. 263 (2012), no. 7, 1769–1808. MR 2956925, DOI 10.1016/j.jfa.2012.06.015
- Maxim Braverman, Alan Carey, Michael Farber, and Varghese Mathai, $L^2$ torsion without the determinant class condition and extended $L^2$ cohomology, Commun. Contemp. Math. 7 (2005), no. 4, 421–462. MR 2166660, DOI 10.1142/S0219199705001866
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339
- A. Carey, M. Farber, and V. Mathai, Determinant lines, von Neumann algebras and $L^2$ torsion, J. Reine Angew. Math. 484 (1997), 153–181. MR 1437302
- Varghese Mathai and Alan L. Carey, $L^2$-acyclicity and $L^2$-torsion invariants, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 91–118. MR 1047278, DOI 10.1090/conm/105/1047278
- Alan L. Carey and Varghese Mathai, $L^2$-torsion invariants, J. Funct. Anal. 110 (1992), no. 2, 377–409. MR 1194991, DOI 10.1016/0022-1236(92)90036-I
- Tullio Ceccherini-Silberstein and Michel Coornaert, Cellular automata and groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. MR 2683112, DOI 10.1007/978-3-642-14034-1
- N.-P. Chung and H. Li. Homoclinic groups, IE groups, and expansive algebraic actions. Preprint, 2011.
- Alexandre I. Danilenko, Entropy theory from the orbital point of view, Monatsh. Math. 134 (2001), no. 2, 121–141. MR 1878075, DOI 10.1007/s006050170003
- Marshall M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR 0362320
- Christopher Deninger, Deligne periods of mixed motives, $K$-theory and the entropy of certain $\textbf {Z}^n$-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259–281. MR 1415320, DOI 10.1090/S0894-0347-97-00228-2
- Christopher Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), no. 3, 737–758. MR 2220105, DOI 10.1090/S0894-0347-06-00519-4
- Christopher Deninger, Mahler measures and Fuglede-Kadison determinants, Münster J. Math. 2 (2009), 45–63. MR 2545607
- Christopher Deninger, Regulators, entropy and infinite determinants, Regulators, Contemp. Math., vol. 571, Amer. Math. Soc., Providence, RI, 2012, pp. 117–134. MR 2953411, DOI 10.1090/conm/571/11324
- Christopher Deninger and Klaus Schmidt, Expansive algebraic actions of discrete residually finite amenable groups and their entropy, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 769–786. MR 2322178, DOI 10.1017/S0143385706000939
- Józef Dodziuk, Peter Linnell, Varghese Mathai, Thomas Schick, and Stuart Yates, Approximating $L^2$-invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (2003), no. 7, 839–873. Dedicated to the memory of Jürgen K. Moser. MR 1990479, DOI 10.1002/cpa.10076
- Jozef Dodziuk and Varghese Mathai, Approximating $L^2$ invariants of amenable covering spaces: a combinatorial approach, J. Funct. Anal. 154 (1998), no. 2, 359–378. MR 1612713, DOI 10.1006/jfan.1997.3205
- Samuel Eilenberg and Tudor Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517–518. MR 85510, DOI 10.2307/1970062
- Gábor Elek, On the analytic zero divisor conjecture of Linnell, Bull. London Math. Soc. 35 (2003), no. 2, 236–238. MR 1952401, DOI 10.1112/S002460930200173X
- Gábor Elek and Endre Szabó, Hyperlinearity, essentially free actions and $L^2$-invariants. The sofic property, Math. Ann. 332 (2005), no. 2, 421–441. MR 2178069, DOI 10.1007/s00208-005-0640-8
- Bent Fuglede and Richard V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520–530. MR 52696, DOI 10.2307/1969645
- F. P. Gantmacher and M. G. Krein, Oscillation matrices and kernels and small vibrations of mechanical systems, Revised edition, AMS Chelsea Publishing, Providence, RI, 2002. Translation based on the 1941 Russian original; Edited and with a preface by Alex Eremenko. MR 1908601, DOI 10.1090/chel/345
- Ross Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol. 243, Springer, New York, 2008. MR 2365352, DOI 10.1007/978-0-387-74614-2
- Uffe Haagerup and Hanne Schultz, Brown measures of unbounded operators affiliated with a finite von Neumann algebra, Math. Scand. 100 (2007), no. 2, 209–263. MR 2339369, DOI 10.7146/math.scand.a-15023
- Henry Helson and David Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165–202. MR 97688, DOI 10.1007/BF02392425
- Charles R. Johnson and Wayne W. Barrett, Spanning-tree extensions of the Hadamard-Fischer inequalities, Linear Algebra Appl. 66 (1985), 177–193. MR 781300, DOI 10.1016/0024-3795(85)90131-4
- Richard V. Kadison, Diagonalizing matrices, Amer. J. Math. 106 (1984), no. 6, 1451–1468. MR 765586, DOI 10.2307/2374400
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Graduate Studies in Mathematics, vol. 16, American Mathematical Society, Providence, RI, 1997. Advanced theory; Corrected reprint of the 1986 original. MR 1468230, DOI 10.1090/gsm/016
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI, 1997. Elementary theory; Reprint of the 1983 original. MR 1468229, DOI 10.1090/gsm/015
- David Kerr and Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501–558. MR 2854085, DOI 10.1007/s00222-011-0324-9
- A. K. Kelmans and B. N. Kimel′fel′d, Multiplicative submodularity of a matrix’s principal minor as a function of the set of its rows, and some combinatorial applications, Discrete Math. 44 (1983), no. 1, 113–116. MR 687900, DOI 10.1016/0012-365X(83)90011-0
- P. H. Kropholler, C. Martinez-Pérez, and B. E. A. Nucinkis, Cohomological finiteness conditions for elementary amenable groups, J. Reine Angew. Math. 637 (2009), 49–62. MR 2599081, DOI 10.1515/CRELLE.2009.090
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294, DOI 10.1007/978-1-4612-0525-8
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Hanfeng Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math. (2) 176 (2012), no. 1, 303–347. MR 2925385, DOI 10.4007/annals.2012.176.1.5
- Douglas Lind, Klaus Schmidt, and Evgeny Verbitskiy, Entropy and growth rate of periodic points of algebraic $\Bbb Z^d$-actions, Dynamical numbers—interplay between dynamical systems and number theory, Contemp. Math., vol. 532, Amer. Math. Soc., Providence, RI, 2010, pp. 195–211. MR 2762141, DOI 10.1090/conm/532/10491
- D. Lind, K. Schmidt, and E. Verbitskiy. Homoclinic points, atoral polynomials, and periodic points of algebraic $\mathbb {Z}^d$-actions. Ergod. Th. Dynam. Sys. 33 (2013), no. 4, 1060–1081.
- Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI 10.1007/BF01231517
- Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24. MR 1749670, DOI 10.1007/BF02810577
- I. Ju. Linnik, A multidimensional analogue of G. Szegő’s limit theorem, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 6, 1393–1403, 1439 (Russian). MR 0422974
- W. Lück, Approximating $L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455–481. MR 1280122, DOI 10.1007/BF01896404
- Wolfgang Lück, $L^2$-invariants of regular coverings of compact manifolds and CW-complexes, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 735–817. MR 1886681
- Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649, DOI 10.1007/978-3-662-04687-6
- Wolfgang Lück and Mikael Rørdam, Algebraic $K$-theory of von Neumann algebras, $K$-Theory 7 (1993), no. 6, 517–536. MR 1268591, DOI 10.1007/BF00961216
- Wolfgang Lück and Mel Rothenberg, Reidemeister torsion and the $K$-theory of von Neumann algebras, $K$-Theory 5 (1991), no. 3, 213–264. MR 1162441, DOI 10.1007/BF00533588
- Wolfgang Lück, Roman Sauer, and Christian Wegner, $L^2$-torsion, the measure-theoretic determinant conjecture, and uniform measure equivalence, J. Topol. Anal. 2 (2010), no. 2, 145–171. MR 2652905, DOI 10.1142/S179352531000032X
- Russell Lyons, Asymptotic enumeration of spanning trees, Combin. Probab. Comput. 14 (2005), no. 4, 491–522. MR 2160416, DOI 10.1017/S096354830500684X
- Russell Lyons, Identities and inequalities for tree entropy, Combin. Probab. Comput. 19 (2010), no. 2, 303–313. MR 2593624, DOI 10.1017/S0963548309990605
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163
- Jean Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Mathematics, vol. 1115, Springer-Verlag, Berlin, 1985. MR 781932, DOI 10.1007/BFb0101575
- Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1–141. MR 910005, DOI 10.1007/BF02790325
- M. Scott Osborne, Basic homological algebra, Graduate Texts in Mathematics, vol. 196, Springer-Verlag, New York, 2000. MR 1757274, DOI 10.1007/978-1-4612-1278-2
- Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0470211
- Justin Peters, Entropy on discrete abelian groups, Adv. in Math. 33 (1979), no. 1, 1–13. MR 540634, DOI 10.1016/S0001-8708(79)80007-9
- Jesse Peterson and Andreas Thom, Group cocycles and the ring of affiliated operators, Invent. Math. 185 (2011), no. 3, 561–592. MR 2827095, DOI 10.1007/s00222-011-0310-2
- Jonathan Rosenberg, Algebraic $K$-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994. MR 1282290, DOI 10.1007/978-1-4612-4314-4
- Thomas Schick, $L^2$-determinant class and approximation of $L^2$-Betti numbers, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3247–3265. MR 1828605, DOI 10.1090/S0002-9947-01-02699-X
- Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
- Barry Simon, Orthogonal polynomials on the unit circle. Part 1, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory. MR 2105088, DOI 10.1090/coll054.1
- Rita Solomyak, On coincidence of entropies for two classes of dynamical systems, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 731–738. MR 1631756, DOI 10.1017/S0143385798108313
- G. Szegö, Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion, Math. Ann. 76 (1915), no. 4, 490–503 (German). MR 1511838, DOI 10.1007/BF01458220
- M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition; Operator Algebras and Non-commutative Geometry, 5. MR 1873025
- V. G. Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986), no. 1(247), 97–147, 240 (Russian). MR 832411
- Vladimir Turaev, Torsions of $3$-dimensional manifolds, Progress in Mathematics, vol. 208, Birkhäuser Verlag, Basel, 2002. MR 1958479, DOI 10.1007/978-3-0348-7999-6
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56–69. MR 171284, DOI 10.2307/1970382
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$ complexes. II, Proc. Roy. Soc. London Ser. A 295 (1966), 129–139. MR 211402, DOI 10.1098/rspa.1966.0230
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- Christian Wegner, $L^2$-invariants of finite aspherical CW-complexes, Manuscripta Math. 128 (2009), no. 4, 469–481. MR 2487437, DOI 10.1007/s00229-008-0246-z
- S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Ž. 8 (1967), 230–239 (Russian). MR 0214726
Bibliographic Information
- Hanfeng Li
- Affiliation: Department of Mathematics, Chongqing University, Chongqing 401331, China — and — Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260-2900
- Email: hfli@math.buffalo.edu
- Andreas Thom
- Affiliation: Mathematisches Institut, Universität Leipzig, PF 100920, 04009 Leipzig, Germany
- MR Author ID: 780176
- ORCID: 0000-0002-7245-2861
- Email: thom@math.uni-leipzig.de
- Received by editor(s): June 1, 2012
- Received by editor(s) in revised form: March 8, 2013
- Published electronically: July 23, 2013
- Additional Notes: The first author was partially supported by NSF Grants DMS-0701414 and DMS-1001625.
The second author was supported by the ERC Starting Grant 277728. - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 27 (2014), 239-292
- MSC (2010): Primary 37B40, 37A35, 22D25, 58J52
- DOI: https://doi.org/10.1090/S0894-0347-2013-00778-X
- MathSciNet review: 3110799