The Buzzard–Diamond–Jarvis conjecture for unitary groups
HTML articles powered by AMS MathViewer
- by Toby Gee, Tong Liu and David Savitt;
- J. Amer. Math. Soc. 27 (2014), 389-435
- DOI: https://doi.org/10.1090/S0894-0347-2013-00775-4
- Published electronically: July 3, 2013
- PDF | Request permission
Abstract:
Let $p>2$ be prime. We prove the weight part of Serre’s conjecture for rank two unitary groups for mod $p$ representations in the unramified case (that is, the Buzzard–Diamond–Jarvis conjecture for unitary groups), by proving that any Serre weight which occurs is a predicted weight. Our methods are purely local, using the theory of $(\varphi ,\hat {G})$-modules to determine the possible reductions of certain two-dimensional crystalline representations.References
- Kevin Buzzard, Fred Diamond, and Frazer Jarvis, On Serre’s conjecture for mod $\ell$ Galois representations over totally real fields, Duke Math. J. 155 (2010), no. 1, 105–161. MR 2730374, DOI 10.1215/00127094-2010-052
- Thomas Barnet-Lamb, Toby Gee, and David Geraghty, Serre weights for rank two unitary groups, Math. Ann. (to appear).
- Thomas Barnet-Lamb, Toby Gee, and David Geraghty, Congruences between Hilbert modular forms: constructing ordinary lifts, Duke Math. J. 161 (2012), no. 8, 1521–1580. MR 2931274, DOI 10.1215/00127094-1593326
- Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy and change of weight, Ann. of Math. (to appear).
- Christophe Breuil, Représentations $p$-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307 (1997), no. 2, 191–224 (French). MR 1428871, DOI 10.1007/s002080050031
- Christophe Breuil, Schémas en groupes et corps des normes, unpublished, 1998.
- Christophe Breuil, Une application de corps des normes, Compositio Math. 117 (1999), no. 2, 189–203 (French, with English and French summaries). MR 1695849, DOI 10.1023/A:1000923331053
- Christophe Breuil, Groupes $p$-divisibles, groupes finis et modules filtrés, Ann. of Math. (2) 152 (2000), no. 2, 489–549 (French, with French summary). MR 1804530, DOI 10.2307/2661391
- Seunghwan Chang and Fred Diamond, Extensions of rank one $(\phi ,\Gamma )$-modules and crystalline representations, Compos. Math. 147 (2011), no. 2, 375–427. MR 2776609, DOI 10.1112/S0010437X1000504X
- Xavier Caruso and Tong Liu, Some bounds for ramification of $p^n$-torsion semi-stable representations, J. Algebra 325 (2011), 70–96. MR 2745530, DOI 10.1016/j.jalgebra.2010.10.005
- Brian Conrad, Lifting global representations with local properties, preprint, 2011.
- Gerasimos Dousmanis, On reductions of families of crystalline Galois representations, Doc. Math. 15 (2010), 873–938. MR 2745686
- Jean-Marc Fontaine, Représentations $p$-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249–309 (French). MR 1106901
- Jean-Marc Fontaine, Le corps des périodes $p$-adiques, Astérisque 223 (1994), 59–111 (French). With an appendix by Pierre Colmez; Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293971
- Toby Gee, On the weights of mod $p$ Hilbert modular forms, Invent. Math. 184 (2011), no. 1, 1–46. MR 2782251, DOI 10.1007/s00222-010-0284-5
- Toby Gee and Mark Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, preprint, 2012.
- Toby Gee, Tong Liu, and David Savitt, Crystalline extensions and the weight part of Serre’s conjecture, Algebra Number Theory 6 (2012), no. 7, 1537–1559. MR 3007158, DOI 10.2140/ant.2012.6.1537
- Toby Gee and David Savitt, Serre weights for mod $p$ Hilbert modular forms: the totally ramified case, J. Reine Angew. Math. 660 (2011), 1–26. MR 2855818, DOI 10.1515/crelle.2011.079
- Mark Kisin, Crystalline representations and $F$-crystals, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459–496. MR 2263197, DOI 10.1007/978-0-8176-4532-8_{7}
- Mark Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), no. 2, 513–546. MR 2373358, DOI 10.1090/S0894-0347-07-00576-0
- Mark Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), no. 3, 1085–1180. MR 2600871, DOI 10.4007/annals.2009.170.1085
- Tong Liu, Filtration associated to torsion semi-stable representations, preprint, 2007.
- Tong Liu, Torsion $p$-adic Galois representations and a conjecture of Fontaine, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 4, 633–674 (English, with English and French summaries). MR 2191528, DOI 10.1016/j.ansens.2007.05.002
- Tong Liu, On lattices in semi-stable representations: a proof of a conjecture of Breuil, Compos. Math. 144 (2008), no. 1, 61–88. MR 2388556, DOI 10.1112/S0010437X0700317X
- Tong Liu, The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$, preprint, 2010.
- Tong Liu, A note on lattices in semi-stable representations, Math. Ann. 346 (2010), no. 1, 117–138. MR 2558890, DOI 10.1007/s00208-009-0392-y
- Tong Liu, Lattices in filtered $(\phi ,N)$-modules, J. Inst. Math. Jussieu 11 (2012), no. 3, 659–693. MR 2931320, DOI 10.1017/S1474748011000235
- Jan Nekovář, On $p$-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202. MR 1263527, DOI 10.1007/s10107-005-0696-y
- James Newton, Serre weights and Shimura curves, preprint, 2013.
- David Savitt, Breuil modules for Raynaud schemes, J. Number Theory 128 (2008), no. 11, 2939–2950. MR 2457845, DOI 10.1016/j.jnt.2008.05.002
- Jack Thorne, On the automorphy of $l$-adic Galois representations with small residual image, J. Inst. Math. Jussieu 11 (2012), no. 4, 855–920. With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne. MR 2979825, DOI 10.1017/S1474748012000023
- Hui June Zhu, Crystalline representations of $G_{\mathbb {Q}_{p^a}}$ with coefficients, preprint available as arXiv:0807.1078, 2008.
Bibliographic Information
- Toby Gee
- Affiliation: Department of Mathematics, Imperial College London, London, SW7 2AZ United Kingdom
- Email: toby.gee@imperial.ac.uk
- Tong Liu
- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907
- MR Author ID: 638721
- Email: tongliu@math.purdue.edu
- David Savitt
- Affiliation: Department of Mathematics, University of Arizona, 617 N. Santa Rita Avenue, Tucson, Arizona 85721-0089
- Email: savitt@math.arizona.edu
- Received by editor(s): July 5, 2012
- Received by editor(s) in revised form: May 15, 2013
- Published electronically: July 3, 2013
- Additional Notes: The second author was partially supported by NSF grant DMS-0901360.
The third author was partially supported by NSF grant DMS-0901049 and NSF CAREER grant DMS-1054032. - © Copyright 2013 American Mathematical Society
- Journal: J. Amer. Math. Soc. 27 (2014), 389-435
- MSC (2010): Primary 11F33, 11F80
- DOI: https://doi.org/10.1090/S0894-0347-2013-00775-4
- MathSciNet review: 3164985