Epipelagic representations and invariant theory
HTML articles powered by AMS MathViewer
- by Mark Reeder and Jiu-Kang Yu;
- J. Amer. Math. Soc. 27 (2014), 437-477
- DOI: https://doi.org/10.1090/S0894-0347-2013-00780-8
- Published electronically: August 5, 2013
- PDF | Request permission
Abstract:
We introduce a new approach to the representation theory of reductive $p$-adic groups $G$, based on the geometric invariant theory (GIT) of Moy-Prasad quotients. Stable functionals on these quotients are used to give a new construction of supercuspidal representations of $G$ having small positive depth, called epipelagic. With some restrictions on $p$, we classify the stable and semistable functionals on Moy-Prasad quotients. The latter classification determines the nondegenerate $K$-types for $G$ as well as the depths of irreducible representations of $G$. The main step is an equivalence between Moy-Prasad theory and the theory of graded Lie algebras, whose GIT was analyzed by Vinberg and Levy. Our classification shows that stable functionals arise from $\mathbb {Z}$-regular elliptic automorphisms of the absolute root system of $G$. These automorphisms also appear in the Langlands parameters of epipelagic representations, in accordance with the conjectural local Langlands correspondence.References
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1
- Jeffrey D. Adler and Stephen DeBacker, Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive $p$-adic group, Michigan Math. J. 50 (2002), no. 2, 263–286. MR 1914065, DOI 10.1307/mmj/1028575734
- Armand Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tohoku Math. J. (2) 13 (1961), 216–240 (French). MR 147579, DOI 10.2748/tmj/1178244298
- A. Borel and J.-P. Serre, Sur certains sous-groupes des groupes de Lie compacts, Comment. Math. Helv. 27 (1953), 128–139 (French). MR 54612, DOI 10.1007/BF02564557
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $\rm GL(2)$, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120, DOI 10.1007/3-540-31511-X
- Colin J. Bushnell and Guy Henniart Langlands parameters for epipelagic representations of $GL_n$, preprint 2013.
- Henri Carayol, Représentations supercuspidales de $\textrm {GL}_{n}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 1, A17–A20 (French, with English summary). MR 522009
- Stephen DeBacker, Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of Math. (2) 156 (2002), no. 1, 295–332. MR 1935848, DOI 10.2307/3597191
- Wee Teck Gan and Gordan Savin, Endoscopic lifts from $\textrm {PGL}_3$ to $G_2$, Compos. Math. 140 (2004), no. 3, 793–808. MR 2041781, DOI 10.1112/S0010437X03000678
- Benedict H. Gross, Irreducible cuspidal representations with prescribed local behavior, Amer. J. Math. 133 (2011), no. 5, 1231–1258. MR 2843098, DOI 10.1353/ajm.2011.0035
- Benedict H. Gross and Mark Reeder, Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154 (2010), no. 3, 431–508. MR 2730575, DOI 10.1215/00127094-2010-043
- Benedict H. Gross and Gordan Savin, The dual pair $\textrm {PGL}_3\times G_2$, Canad. Math. Bull. 40 (1997), no. 3, 376–384. MR 1464847, DOI 10.4153/CMB-1997-045-0
- Jochen Heinloth, Bao-Châu Ngô, and Zhiwei Yun, Kloosterman sheaves for reductive groups, Ann. of Math. (2) 177 (2013), no. 1, 241–310. MR 2999041, DOI 10.4007/annals.2013.177.1.5
- Kaoru Hiraga, Atsushi Ichino, and Tamotsu Ikeda, Formal degrees and adjoint $\gamma$-factors, J. Amer. Math. Soc. 21 (2008), no. 1, 283–304. MR 2350057, DOI 10.1090/S0894-0347-07-00567-X
- T. Kaletha, Epipelagic $L$-packets and rectifying characters, preprint 2012, arXiv:1209.1720
- Chandrashekhar Khare, Michael Larsen, and Gordan Savin, Functoriality and the inverse Galois problem. II. Groups of type $B_n$ and $G_2$, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), no. 1, 37–70 (English, with English and French summaries). MR 2597780
- Ju-Lee Kim, Supercuspidal representations: an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 273–320. MR 2276772, DOI 10.1090/S0894-0347-06-00544-3
- Andrew Knightly and Charles Li, Modular $L$-values of cubic level, Pacific J. Math. 260 (2012), no. 2, 527–563. MR 3001804, DOI 10.2140/pjm.2012.260.527
- Alexei I. Kostrikin and Phạm Hũ’u Tiệp, Orthogonal decompositions and integral lattices, De Gruyter Expositions in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1994. MR 1308713, DOI 10.1515/9783110901757
- P. C. Kutzko, Mackey’s theorem for nonunitary representations, Proc. Amer. Math. Soc. 64 (1977), no. 1, 173–175. MR 442145, DOI 10.1090/S0002-9939-1977-0442145-3
- Paul Levy, Vinberg’s $\theta$-groups in positive characteristic and Kostant-Weierstrass slices, Transform. Groups 14 (2009), no. 2, 417–461. MR 2504929, DOI 10.1007/s00031-009-9056-y
- George Lusztig, Some examples of square integrable representations of semisimple $p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623–653. MR 694380, DOI 10.1090/S0002-9947-1983-0694380-4
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- David Mumford, Stability of projective varieties, Enseign. Math. (2) 23 (1977), no. 1-2, 39–110. MR 450272
- Mark Reeder, On the Iwahori-spherical discrete series for $p$-adic Chevalley groups; formal degrees and $L$-packets, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 4, 463–491. MR 1290396
- Mark Reeder, Torsion automorphisms of simple Lie algebras, Enseign. Math. (2) 56 (2010), no. 1-2, 3–47. MR 2674853, DOI 10.4171/LEM/56-1-1
- Mark Reeder, Elliptic centralizers in Weyl groups and their coinvariant representations, Represent. Theory 15 (2011), 63–111. MR 2765477, DOI 10.1090/S1088-4165-2011-00377-0
- Mark Reeder, Paul Levy, Jiu-Kang Yu, and Benedict H. Gross, Gradings of positive rank on simple Lie algebras, Transform. Groups 17 (2012), no. 4, 1123–1190. MR 3000483, DOI 10.1007/s00031-012-9196-3
- J.-P. Serre, Coordonnées de Kac, Oberwolfach Reports, 3 (2006), pp. 1787-1790.
- T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198. MR 354894, DOI 10.1007/BF01390173
- Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR 354892, DOI 10.1016/0001-8708(75)90125-5
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 546588
- È. B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 3, 488–526, 709 (Russian). MR 430168
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579–622. MR 1824988, DOI 10.1090/S0894-0347-01-00363-0
Bibliographic Information
- Mark Reeder
- Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
- Email: reederma@bc.edu
- Jiu-Kang Yu
- Affiliation: The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- Email: jkyu@ims.cuhk.edu.hk
- Received by editor(s): August 13, 2012
- Received by editor(s) in revised form: June 20, 2013
- Published electronically: August 5, 2013
- Additional Notes: The first author was supported by NSF grants DMS-0801177 and DMS-0854909
The second author was supported by NSF grant DMS-0854909 - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 27 (2014), 437-477
- MSC (2010): Primary 22E50, 11S15, 11S37
- DOI: https://doi.org/10.1090/S0894-0347-2013-00780-8
- MathSciNet review: 3164986