The Farrell-Jones Conjecture for cocompact lattices in virtually connected Lie groups
HTML articles powered by AMS MathViewer
- by A. Bartels, F. T. Farrell and W. Lück;
- J. Amer. Math. Soc. 27 (2014), 339-388
- DOI: https://doi.org/10.1090/S0894-0347-2014-00782-7
- Published electronically: January 15, 2014
- PDF | Request permission
Abstract:
Let $G$ be a cocompact lattice in a virtually connected Lie group or the fundamental group of a three-dimensional manifold. We prove the $K$- and $L$-theoretic Farrell-Jones Conjectures for $G$.References
- Herbert Abels, Parallelizability of proper actions, global $K$-slices and maximal compact subgroups, Math. Ann. 212 (1974/75), 1–19. MR 375264, DOI 10.1007/BF01343976
- Arthur Bartels, Siegfried Echterhoff, and Wolfgang Lück, Inheritance of isomorphism conjectures under colimits, $K$-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 41–70. MR 2513332, DOI 10.4171/060-1/2
- Arthur Bartels and Wolfgang Lück, Isomorphism conjecture for homotopy $K$-theory and groups acting on trees, J. Pure Appl. Algebra 205 (2006), no. 3, 660–696. MR 2210223, DOI 10.1016/j.jpaa.2005.07.020
- Arthur Bartels and Wolfgang Lück, Induction theorems and isomorphism conjectures for $K$- and $L$-theory, Forum Math. 19 (2007), no. 3, 379–406. MR 2328114, DOI 10.1515/FORUM.2007.016
- Arthur Bartels and Wolfgang Lück, On crossed product rings with twisted involutions, their module categories and $L$-theory, Cohomology of groups and algebraic $K$-theory, Adv. Lect. Math. (ALM), vol. 12, Int. Press, Somerville, MA, 2010, pp. 1–54. MR 2655174
- Arthur Bartels and Wolfgang Lück, The Borel conjecture for hyperbolic and $\textrm {CAT}(0)$-groups, Ann. of Math. (2) 175 (2012), no. 2, 631–689. MR 2993750, DOI 10.4007/annals.2012.175.2.5
- A. Bartels and W. Lück, The Farrell-Hsiang method revisited, Math. Ann. 354 (2012), no. 1, 209–226. MR 2957625, DOI 10.1007/s00208-011-0727-3
- Arthur Bartels, Wolfgang Lück, and Holger Reich, Equivariant covers for hyperbolic groups, Geom. Topol. 12 (2008), no. 3, 1799–1882. MR 2421141, DOI 10.2140/gt.2008.12.1799
- Arthur Bartels, Wolfgang Lück, and Holger Reich, The $K$-theoretic Farrell-Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008), no. 1, 29–70. MR 2385666, DOI 10.1007/s00222-007-0093-7
- Arthur Bartels, Wolfgang Lück, and Holger Reich, On the Farrell-Jones conjecture and its applications, J. Topol. 1 (2008), no. 1, 57–86. MR 2365652, DOI 10.1112/jtopol/jtm008
- A. Bartels, W. Lück, and S. Weinberger, On hyperbolic groups with spheres as boundary. arXiv:0911.3725v1 [math.GT], to appear in the Journal of Differential Geometry (2009).
- Arthur Bartels and Holger Reich, Coefficients for the Farrell-Jones conjecture, Adv. Math. 209 (2007), no. 1, 337–362. MR 2294225, DOI 10.1016/j.aim.2006.05.005
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- J. Bryant, S. Ferry, W. Mio, and S. Weinberger, Topology of homology manifolds, Ann. of Math. (2) 143 (1996), no. 3, 435–467. MR 1394965, DOI 10.2307/2118532
- Frank Connolly and Tadeusz Koźniewski, Rigidity and crystallographic groups. I, Invent. Math. 99 (1990), no. 1, 25–48. MR 1029389, DOI 10.1007/BF01234410
- James F. Davis, Qayum Khan, and Andrew Ranicki, Algebraic $K$-theory over the infinite dihedral group: an algebraic approach, Algebr. Geom. Topol. 11 (2011), no. 4, 2391–2436. MR 2835234, DOI 10.2140/agt.2011.11.2391
- James F. Davis, Frank Quinn, and Holger Reich, Algebraic $K$-theory over the infinite dihedral group: a controlled topology approach, J. Topol. 4 (2011), no. 3, 505–528. MR 2832565, DOI 10.1112/jtopol/jtr009
- Patrick B. Eberlein, Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. MR 1441541
- F. T. Farrell and W. C. Hsiang, The Whitehead group of poly-(finite or cyclic) groups, J. London Math. Soc. (2) 24 (1981), no. 2, 308–324. MR 631942, DOI 10.1112/jlms/s2-24.2.308
- F. T. Farrell and W. C. Hsiang, Topological characterization of flat and almost flat Riemannian manifolds $M^{n}$ $(n\not =3,\,4)$, Amer. J. Math. 105 (1983), no. 3, 641–672. MR 704219, DOI 10.2307/2374318
- F. T. Farrell and L. E. Jones, The surgery $L$-groups of poly-(finite or cyclic) groups, Invent. Math. 91 (1988), no. 3, 559–586. MR 928498, DOI 10.1007/BF01388787
- F. T. Farrell and L. E. Jones, Isomorphism conjectures in algebraic $K$-theory, J. Amer. Math. Soc. 6 (1993), no. 2, 249–297. MR 1179537, DOI 10.1090/S0894-0347-1993-1179537-0
- I. Hambleton, E. K. Pedersen, and D. Rosenthal, Assembly maps for group extensions in $K$- and $L$-theory. Preprint, arXiv:math.KT/0709.0437v1, to appear in Pure and Applied Mathematics Quarterly (2007).
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Nigel Higson and Gennadi Kasparov, $E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), no. 1, 23–74. MR 1821144, DOI 10.1007/s002220000118
- P. Kühl, Isomorphismusvermutungen und 3-Mannigfaltigkeiten. Preprint, arXiv:0907.0729v1 [math.KT] (2009).
- Wolfgang Lück, $K$- and $L$-theory of the semi-direct product of the discrete 3-dimensional Heisenberg group by ${\Bbb Z}/4$, Geom. Topol. 9 (2005), 1639–1676. MR 2175154, DOI 10.2140/gt.2005.9.1639
- Wolfgang Lück, Survey on classifying spaces for families of subgroups, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., vol. 248, Birkhäuser, Basel, 2005, pp. 269–322. MR 2195456, DOI 10.1007/3-7643-7447-0_{7}
- W. Lück and H. Reich, The Baum-Connes and the Farrell-Jones conjectures in $K$- and $L$-theory, In Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 703–842.
- Frank Quinn, An obstruction to the resolution of homology manifolds, Michigan Math. J. 34 (1987), no. 2, 285–291. MR 894878, DOI 10.1307/mmj/1029003559
- Frank Quinn, Algebraic $K$-theory over virtually abelian groups, J. Pure Appl. Algebra 216 (2012), no. 1, 170–183. MR 2826431, DOI 10.1016/j.jpaa.2011.06.001
- Frank Quinn, Controlled K-theory I: Basic theory, Pure Appl. Math. Q. 8 (2012), no. 2, 329–421. MR 2900172, DOI 10.4310/PAMQ.2012.v8.n2.a2
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 507234
- S. K. Roushon, The Farrell-Jones isomorphism conjecture for 3-manifold groups, J. K-Theory 1 (2008), no. 1, 49–82. MR 2424566, DOI 10.1017/is007011012jkt005
- Sayed K. Roushon, The isomorphism conjecture for 3-manifold groups and $K$-theory of virtually poly-surface groups, J. K-Theory 1 (2008), no. 1, 83–93. MR 2424567, DOI 10.1017/is007011012jkt006
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 344216
- E. B. Vinberg (ed.), Lie groups and Lie algebras. II, Encyclopaedia of Mathematical Sciences, vol. 21, Springer-Verlag, Berlin, 2000. Discrete subgroups of Lie groups and cohomologies of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. Vol. 21 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow, 1988 [ MR0968444 (89f:22001)]; Translated by John Danskin; Translation edited by A. L. Onishchik and E. B. Vinberg. MR 1756406
- Christian Wegner, The $K$-theoretic Farrell-Jones conjecture for CAT(0)-groups, Proc. Amer. Math. Soc. 140 (2012), no. 3, 779–793. MR 2869063, DOI 10.1090/S0002-9939-2011-11150-X
Bibliographic Information
- A. Bartels
- Affiliation: Westfälische Wilhelms-Universität Münster, Mathematicians Institut,Einsteinium. 62, D-48149 Münster, Germany
- MR Author ID: 653568
- Email: bartelsa@math.uni-muenster.de
- F. T. Farrell
- Affiliation: Department of Mathematics, Suny, Binghamton, New York, New York 13902
- MR Author ID: 65305
- Email: farrell@math.binghamton.edu
- W. Lück
- Affiliation: Mathematicians Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
- Email: wolfgang.lueck@him.uni-bonn.de
- Received by editor(s): January 3, 2011
- Received by editor(s) in revised form: April 16, 2013
- Published electronically: January 15, 2014
- © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 27 (2014), 339-388
- MSC (2010): Primary 18F25, 19A31, 19B28, 19G24, 22E40, 57N99
- DOI: https://doi.org/10.1090/S0894-0347-2014-00782-7
- MathSciNet review: 3164984