Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields
HTML articles powered by AMS MathViewer
- by Ming-Lun Hsieh;
- J. Amer. Math. Soc. 27 (2014), 753-862
- DOI: https://doi.org/10.1090/S0894-0347-2014-00786-4
- Published electronically: March 5, 2014
- PDF | Request permission
Abstract:
The purpose of this article is to prove the Iwasawa main conjecture for CM fields in certain cases through a detailed study on the divisibility relation between $p$-adic $L$-functions for CM fields and Eisenstein ideals of unitary groups of degree three.References
- Joël Bellaïche and Gaëtan Chenevier, Formes non tempérées pour $\rm U(3)$ et conjectures de Bloch-Kato, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 4, 611–662 (French, with English and French summaries). MR 2097894, DOI 10.1016/j.ansens.2004.05.001
- Joël Bellaïche and Gaëtan Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009), xii+314.
- Don Blasius and Jonathan D. Rogawski, Motives for Hilbert modular forms, Invent. Math. 114 (1993), no. 1, 55–87. MR 1235020, DOI 10.1007/BF01232663
- A. Burungale, On the $\mu$-invariant of cyclotomic derivative of Katz $p$-adic $L$-functions, J. Inst. Math. Jussieu , posted on (2014)., DOI 10.1017/S1474748013000388
- W. Casselman, The unramified principal series of ${\mathfrak {p}}$-adic groups. I. The spherical function, Compositio Math. 40 (1980), no. 3, 387–406. MR 571057
- John Coates and Catherine Goldstein, Some remarks on the main conjecture for elliptic curves with complex multiplication, Amer. J. Math. 105 (1983), no. 2, 337–366. MR 701564, DOI 10.2307/2374263
- Ching-Li Chai, Compactification of Siegel moduli schemes, London Mathematical Society Lecture Note Series, vol. 107, Cambridge University Press, Cambridge, 1985. MR 853543, DOI 10.1017/CBO9780511721298
- Ching-Li Chai, Methods for $p$-adic monodromy, J. Inst. Math. Jussieu 7 (2008), no. 2, 247–268. MR 2400722, DOI 10.1017/S1474748007000199
- Pierre Deligne and Kenneth A. Ribet, Values of abelian $L$-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227–286. MR 579702, DOI 10.1007/BF01453237
- G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford.
- Tobias Finis, Divisibility of anticyclotomic $L$-functions and theta functions with complex multiplication, Ann. of Math. (2) 163 (2006), no. 3, 767–807. MR 2215134, DOI 10.4007/annals.2006.163.767
- K. Fujiwara, Arithmetic compactifications of Shimura varieties (I), Master’s Thesis, University of Tokyo, 1989.
- Stephen Gelbart, Ilya Piatetski-Shapiro, and Stephen Rallis, Explicit constructions of automorphic $L$-functions, Lecture Notes in Mathematics, vol. 1254, Springer-Verlag, Berlin, 1987. MR 892097, DOI 10.1007/BFb0078125
- Ralph Greenberg, Iwasawa theory and $p$-adic deformations of motives, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 193–223. MR 1265554, DOI 10.1090/pspum/055.2/1265554
- Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 51–144. MR 1754686, DOI 10.1007/BFb0093453
- Ralph Greenberg and Vinayak Vatsal, On the Iwasawa invariants of elliptic curves, Invent. Math. 142 (2000), no. 1, 17–63. MR 1784796, DOI 10.1007/s002220000080
- Michael Harris, Eisenstein series on Shimura varieties, Ann. of Math. (2) 119 (1984), no. 1, 59–94. MR 736560, DOI 10.2307/2006963
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135, DOI 10.1017/CBO9780511623691
- Haruzo Hida, Control theorems of $p$-nearly ordinary cohomology groups for $\textrm {SL}(n)$, Bull. Soc. Math. France 123 (1995), no. 3, 425–475 (English, with English and French summaries). MR 1373742
- Haruzo Hida, Automorphic induction and Leopoldt type conjectures for $\textrm {GL}(n)$, Asian J. Math. 2 (1998), no. 4, 667–710. Mikio Sato: a great Japanese mathematician of the twentieth century. MR 1734126, DOI 10.4310/AJM.1998.v2.n4.a5
- Haruzo Hida, Control theorems of coherent sheaves on Shimura varieties of PEL type, J. Inst. Math. Jussieu 1 (2002), no. 1, 1–76. MR 1954939, DOI 10.1017/S1474748002000014
- H. Hida, Non-vanishing modulo $p$ of Hecke $L$-values, Geometric aspects of dwork theory. vol. I, II, 2004, pp. 735–784.
- H. Hida, $p$-adic automorphic forms on Shimura varieties, Springer Monographs in Mathematics, Springer-Verlag, New York, 2004.
- Haruzo Hida, Anticyclotomic main conjectures, Doc. Math. Extra Vol. (2006), 465–532. MR 2290595
- H. Hida, Non-vanishing modulo $p$ of Hecke $L$-values and application, $L$-functions and Galois representations, 2007, pp. 207–269.
- Haruzo Hida, Irreducibility of the Igusa tower, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 1, 1–20. MR 2465518, DOI 10.1007/s10114-008-6490-z
- H. Hida, Quadratic exercises in Iwasawa theory, Int. Math. Res. Not. IMRN 5 (2009), 912–952.
- Haruzo Hida, The Iwasawa $\mu$-invariant of $p$-adic Hecke $L$-functions, Ann. of Math. (2) 172 (2010), no. 1, 41–137. MR 2680417, DOI 10.4007/annals.2010.172.41
- Michael Harris, Jian-Shu Li, and Christopher M. Skinner, $p$-adic $L$-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure, Doc. Math. Extra Vol. (2006), 393–464. MR 2290594
- Ming-Lun Hsieh, The algebraic functional equation of Selmer groups for CM fields, J. Number Theory 130 (2010), no. 9, 1914–1924. MR 2653204, DOI 10.1016/j.jnt.2010.02.003
- Ming-Lun Hsieh, Ordinary $p$-adic Eisenstein series and $p$-adic $L$-functions for unitary groups, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 987–1059 (English, with English and French summaries). MR 2918724, DOI 10.5802/aif.2635
- Ming-Lun Hsieh, On the non-vanishing of Hecke $L$-values modulo $p$, Amer. J. Math. 134 (2012), no. 6, 1503–1539. MR 2999287, DOI 10.1353/ajm.2012.0049
- M.-L. Hsieh, On the $\mu$-invariant of anticyclotomic $p$-adic $L$-functions for CM fields, J. Reine Angew. Math. , posted on (2013). ArXiv:1112.1574., DOI 10.1515/crelle-2012-0056
- H. Hida and J. Tilouine, Anti-cyclotomic Katz $p$-adic $L$-functions and congruence modules, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 2, 189–259. MR 1209708
- H. Hida and J. Tilouine, On the anticyclotomic main conjecture for CM fields, Invent. Math. 117 (1994), no. 1, 89–147. MR 1269427, DOI 10.1007/BF01232236
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- Nicholas M. Katz, $p$-adic $L$-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199–297. MR 513095, DOI 10.1007/BF01390187
- N. Katz, Serre-Tate local moduli, Algebraic surfaces (orsay, 1976–78), 1981, pp. 138–202.
- Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373–444. MR 1124982, DOI 10.1090/S0894-0347-1992-1124982-1
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 579181
- K.-W. Lan, Arithmetic compactification of PEL-type Shimura varieties, Ph.D. Thesis, Harvard University, 2008.
- Kai-Wen Lan, Comparison between analytic and algebraic constructions of toroidal compactifications of PEL-type Shimura varieties, J. Reine Angew. Math. 664 (2012), 163–228. MR 2980135, DOI 10.1515/crelle.2011.099
- Jian-Shu Li, Nonvanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math. 428 (1992), 177–217. MR 1166512, DOI 10.1515/crll.1992.428.177
- F. Mainardi, Sur la conjecture principale de iwasawa pour les corps CM, Ph.D. Thesis, Universite Paris XIII, 2004.
- Fabio Mainardi, On the main conjecture for CM fields, Amer. J. Math. 130 (2008), no. 2, 499–538. MR 2405166, DOI 10.1353/ajm.2008.0019
- David Mauger, Algèbres de Hecke quasi-ordinaires universelles, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 2, 171–222 (French, with English and French summaries). MR 2061780, DOI 10.1016/j.ansens.2004.01.001
- Atsushi Murase and Takashi Sugano, Local theory of primitive theta functions, Compositio Math. 123 (2000), no. 3, 273–302. MR 1795292, DOI 10.1023/A:1002051017269
- Atsushi Murase and Takashi Sugano, Fourier-Jacobi expansion of Eisenstein series on unitary groups of degree three, J. Math. Sci. Univ. Tokyo 9 (2002), no. 2, 347–404. MR 1904935
- Atsushi Murase and Takashi Sugano, On the Fourier-Jacobi expansion of the unitary Kudla lift, Compos. Math. 143 (2007), no. 1, 1–46.
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Oxford University Press, London, 1970. MR 282985
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- Jan Nekovář, Selmer complexes, Astérisque 310 (2006), viii+559 (English, with English and French summaries). MR 2333680
- B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. France (N.S.) 17 (1984), 130.
- Kenneth A. Ribet, A modular construction of unramified $p$-extensions of $Q(\mu _{p})$, Invent. Math. 34 (1976), no. 3, 151–162. MR 419403, DOI 10.1007/BF01403065
- Jonathan D. Rogawski, Analytic expression for the number of points mod $p$, The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, pp. 65–109. MR 1155227
- David E. Rohrlich, Root numbers of Hecke $L$-functions of CM fields, Amer. J. Math. 104 (1982), no. 3, 517–543. MR 658544, DOI 10.2307/2374152
- Karl Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25–68. MR 1079839, DOI 10.1007/BF01239508
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 263823
- Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Vol. 152, Springer-Verlag, Berlin, 1962/1964. Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics.
- Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 354651
- Goro Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), no. 3, 637–679. MR 507462
- T. Shintani, On automorphic forms on unitary groups of oreder 3, 1979. unpublished.
- Goro Shimura, On Eisenstein series, Duke Math. J. 50 (1983), no. 2, 417–476. MR 705034
- G. Shimura, Euler products and Eisenstein series, CBMS Regional Conference Series in Mathematics, vol. 93, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997.
- Goro Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol. 46, Princeton University Press, Princeton, NJ, 1998. MR 1492449, DOI 10.1515/9781400883943
- C. Skinner and E. Urban, The Iwasawa Main Conjectures for $\text {GL}_2$, Inventiones Mathematicae , posted on (2013)., DOI 10.1007/s00222-013-0448-1
- J. Tilouine and E. Urban, Several-variable $p$-adic families of Siegel-Hilbert cusp eigensystems and their Galois representations, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 4, 499–574 (English, with English and French summaries). MR 1693583, DOI 10.1016/S0012-9593(99)80021-4
- E. Urban, On residually reducible representations on local rings, J. Algebra 212 (1999), no. 2, 738–742. MR 1676863, DOI 10.1006/jabr.1998.7635
- Eric Urban, Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J. 106 (2001), no. 3, 485–525. MR 1813234, DOI 10.1215/S0012-7094-01-10633-9
- Eric Urban, Groupes de Selmer er fonctions L p-adiques pour les représentations modulaires adjointes, 2006. Preprint.
- Torsten Wedhorn, Ordinariness in good reductions of Shimura varieties of PEL-type, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 5, 575–618 (English, with English and French summaries). MR 1710754, DOI 10.1016/S0012-9593(01)80001-X
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, DOI 10.2307/1971468
- Rodney I. Yager, On two variable $p$-adic $L$-functions, Ann. of Math. (2) 115 (1982), no. 2, 411–449. MR 647813, DOI 10.2307/1971398
- Tonghai Yang, Theta liftings and Hecke $L$-functions, J. Reine Angew. Math. 485 (1997), 25–53. MR 1442188, DOI 10.1515/crll.1997.485.25
Bibliographic Information
- Ming-Lun Hsieh
- Affiliation: Department of Mathematics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Email: mlhsieh@math.ntu.edu.tw
- Received by editor(s): June 18, 2012
- Received by editor(s) in revised form: April 17, 2013
- Published electronically: March 5, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 27 (2014), 753-862
- MSC (2010): Primary 11R23, 11F70; Secondary 11F33
- DOI: https://doi.org/10.1090/S0894-0347-2014-00786-4
- MathSciNet review: 3194494