A Khovanov stable homotopy type
HTML articles powered by AMS MathViewer
- by Robert Lipshitz and Sucharit Sarkar;
- J. Amer. Math. Soc. 27 (2014), 983-1042
- DOI: https://doi.org/10.1090/S0894-0347-2014-00785-2
- Published electronically: April 22, 2014
Abstract:
Given a link diagram $L$ we construct spectra $\mathcal {X}_{Kh}^j(L)$ so that the Khovanov homology $K^{i,j}(L)$ is isomorphic to the (reduced) singular cohomology $\widetilde {H}^{i}(\mathcal {X}_{Kh}^j(L))$. The construction of $\mathcal {X}_{Kh}^j(L)$ is combinatorial and explicit. We prove that the stable homotopy type of $\mathcal {X}_{Kh}^j(L)$ depends only on the isotopy class of the corresponding link.References
- D. M. Austin and P. J. Braam, Morse-Bott theory and equivariant cohomology, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 123–183. MR 1362827
- John A. Baldwin, On the spectral sequence from Khovanov homology to Heegaard Floer homology, Int. Math. Res. Not. , posted on (2010)., DOI 10.1093/imrn/rnq220
- Jonathan M. Bloom, A link surgery spectral sequence in monopole Floer homology, Adv. Math. 226 (2011), no. 4, 3216–3281. MR 2764887, DOI 10.1016/j.aim.2010.10.014
- Dror Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002), 337–370. MR 1917056, DOI 10.2140/agt.2002.2.337
- Tomasz Brzezinski and Robert Wisbauer, Corings and comodules, London Mathematical Society Lecture Note Series, vol. 309, Cambridge University Press, Cambridge, 2003. MR 2012570, DOI 10.1017/CBO9780511546495
- R. L. Cohen, J. D. S. Jones, and G. B. Segal, Floer’s infinite-dimensional Morse theory and homotopy theory, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 297–325. MR 1362832
- Ralph L. Cohen, The Floer homotopy type of the cotangent bundle, Pure Appl. Math. Q. 6 (2010), no. 2, Special Issue: In honor of Michael Atiyah and Isadore Singer, 391–438. MR 2761853, DOI 10.4310/PAMQ.2010.v6.n2.a6
- Octavian Cornea, Homotopical dynamics: suspension and duality, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 379–391. MR 1756976, DOI 10.1017/S0143385700000183
- Brent Everitt, Robert Lipshitz, Sucharit Sarkar, and Paul Turner, Khovanov homotopy types and the Dold-Thom functor. arXiv:1202.1856., DOI 10.4310/HHA.2016.v18.n2.a9
- Brent Everitt and Paul Turner, The homotopy theory of Khovanov homology. arXiv:1112.3460., DOI 10.2140/agt.2014.14.2747
- John M. Franks, Morse-Smale flows and homotopy theory, Topology 18 (1979), no. 3, 199–215. MR 546790, DOI 10.1016/0040-9383(79)90003-X
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Po Hu, Daniel Kriz, and Igor Kriz, Field theories, stable homotopy theory and Khovanov homology. arXiv:1203.4773.
- Klaus Jänich, On the classification of $O(n)$-manifolds, Math. Ann. 176 (1968), 53–76. MR 226674, DOI 10.1007/BF02052956
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- Mikhail Khovanov, Patterns in knot cohomology. I, Experiment. Math. 12 (2003), no. 3, 365–374. MR 2034399, DOI 10.1080/10586458.2003.10504505
- Peter Kronheimer and Ciprian Manolescu, Periodic Floer pro-spectra from the Seiberg-Witten equations. arXiv:math/0203243.
- Thomas Kragh, The Viterbo transfer as a map of spectra. arXiv:0712.2533.
- Gerd Laures, On cobordism of manifolds with corners, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5667–5688. MR 1781277, DOI 10.1090/S0002-9947-00-02676-3
- Eun Soo Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005), no. 2, 554–586. MR 2173845, DOI 10.1016/j.aim.2004.10.015
- Robert Lipshitz and Sucharit Sarkar, A refinement of Rasmussen’s s-invariant. To appear in Duke Math. J., arXiv:1206:3532.
- Robert Lipshitz and Sucharit Sarkar, A Steenrod square on Khovanov homology. To appear in J. Topology, arXiv:1204.5776.
- Ciprian Manolescu, Seiberg-Witten-Floer stable homotopy type of three-manifolds with $b_1=0$, Geom. Topol. 7 (2003), 889–932. MR 2026550, DOI 10.2140/gt.2003.7.889
- Ciprian Manolescu, A gluing theorem for the relative Bauer-Furuta invariants, J. Differential Geom. 76 (2007), no. 1, 117–153. MR 2312050
- Ciprian Manolescu and Peter Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova, 2008, pp. 60–81. MR 2509750
- Peter Ozsváth, Jacob Rasmussen, and Zoltán Szabó, Odd Khovanov homology, Vol. 13, 2013., DOI 10.2140/agt.2013.13.1465
- Jacob Rasmussen, Knot polynomials and knot homologies, Geometry and topology of manifolds, Fields Inst. Commun., vol. 47, Amer. Math. Soc., Providence, RI, 2005, pp. 261–280. MR 2189938, DOI 10.1007/bf01579132
- Jacob Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no. 2, 419–447. MR 2729272, DOI 10.1007/s00222-010-0275-6
- Cotton Seed, Computations of the Lipshitz-Sarkar Steenrod square on Khovanov homology. arXiv:1210.1882.
- E. H. Spanier, Function spaces and duality, Ann. of Math. (2) 70 (1959), 338–378. MR 107862, DOI 10.2307/1970107
- Robert M. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212, Springer-Verlag, New York-Heidelberg, 1975. MR 385836, DOI 10.1007/978-3-642-61923-6
- Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028, DOI 10.1007/978-1-4613-8431-1
Bibliographic Information
- Robert Lipshitz
- Affiliation: Department of Mathematics, Columbia University, 2900 Broadway, New York, New York 10027
- MR Author ID: 792304
- Email: lipshitz@math.columbia.edu
- Sucharit Sarkar
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 740423
- Email: sucharit@math.princeton.edu
- Received by editor(s): August 13, 2012
- Received by editor(s) in revised form: May 23, 2013, July 9, 2013, and August 6, 2013
- Published electronically: April 22, 2014
- Additional Notes: The first author was supported by NSF grant number DMS-0905796 and a Sloan Research Fellowship.
The second author was supported by a Clay Mathematics Institute Postdoctoral Fellowship - © Copyright 2014 Robert Lipshitz and Sucharit Sarkar
- Journal: J. Amer. Math. Soc. 27 (2014), 983-1042
- MSC (2010): Primary 57M25, 55P42
- DOI: https://doi.org/10.1090/S0894-0347-2014-00785-2
- MathSciNet review: 3230817