Coxeter orbits and Brauer trees III
HTML articles powered by AMS MathViewer
- by Olivier Dudas and Raphaël Rouquier;
- J. Amer. Math. Soc. 27 (2014), 1117-1145
- DOI: https://doi.org/10.1090/S0894-0347-2014-00791-8
- Published electronically: March 25, 2014
- PDF | Request permission
Abstract:
This article is the final one of a series of articles on certain blocks of modular representations of finite groups of Lie type and the associated geometry. We prove the conjecture of Broué on derived equivalences induced by the complex of cohomology of Deligne-Lusztig varieties in the case of Coxeter elements. We also prove a conjecture of Hiß, Lübeck, and Malle on the Brauer trees of the corresponding blocks. As a consequence, we determine the Brauer tree (in particular, the decomposition matrix) of the principal $\ell$-block of $E_7(q)$ when $\ell \mid \Phi _{18}(q)$ and $E_8(q)$ when $\ell \mid \Phi _{18}(q)$ or $\ell \mid \Phi _{30}(q)$.References
- Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234. MR 1214458
- Cédric Bonnafé, Quasi-isolated elements in reductive groups, Comm. Algebra 33 (2005), no. 7, 2315–2337. MR 2153225, DOI 10.1081/AGB-200063602
- Cédric Bonnafé and Raphaël Rouquier, Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. Inst. Hautes Études Sci. 97 (2003), 1–59 (French). MR 2010739, DOI 10.1007/s10240-003-0013-3
- Michel Broué, Isométries de caractères et équivalences de Morita ou dérivées, Inst. Hautes Études Sci. Publ. Math. 71 (1990), 45–63 (French). MR 1079643, DOI 10.1007/BF02699877
- Michel Broué and Gunter Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119–189 (German). Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235834
- Michel Broué, Gunter Malle, and Raphaël Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127–190. MR 1637497
- Michel Broué and Jean Michel, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 73–139 (French). MR 1429870
- Michel Broué and Jean Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math. 395 (1989), 56–67 (French). MR 983059, DOI 10.1515/crll.1989.395.56
- Marc Cabanes and Michel Enguehard, Local methods for blocks of reductive groups over a finite field, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 141–163. MR 1429871
- Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756, DOI 10.1017/CBO9780511542763
- D. Craven, On the cohomology of Deligne-Lusztig varieties, 2011. arXiv:1107.1871v1, Preprint.
- D. Craven, Perverse equivalences and Broué’s conjecture II: the cyclic case, 2012. in preparation.
- D. Craven, O. Dudas, and R. Rouquier, Brauer trees of unipotent blocks of $E_7(q)$ and $E_8(q)$, 2013. in preparation.
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- D. I. Deriziotis, The centralizers of semisimple elements of the Chevalley groups $E_{7}$ and $E_{8}$, Tokyo J. Math. 6 (1983), no. 1, 191–216. MR 707848, DOI 10.3836/tjm/1270214335
- D. I. Deriziotis and Martin W. Liebeck, Centralizers of semisimple elements in finite twisted groups of Lie type, J. London Math. Soc. (2) 31 (1985), no. 1, 48–54. MR 810561, DOI 10.1112/jlms/s2-31.1.48
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- François Digne and Jean Michel, Parabolic Deligne-Lusztig varieties, arxiv:1110.4863 (2011). reprint.
- Olivier Dudas, Coxeter orbits and Brauer trees, Adv. Math. 229 (2012), no. 6, 3398–3435. MR 2900443, DOI 10.1016/j.aim.2012.02.011
- Olivier Dudas, Coxeter Orbits and Brauer trees II, Int. Math. Res. Not. , posted on (2013)., DOI 10.1093/imrn/rnt070
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Peter Fleischmann and Ingo Janiszczak, The semisimple conjugacy classes of finite groups of Lie type $E_6$ and $E_7$, Comm. Algebra 21 (1993), no. 1, 93–161. MR 1194553, DOI 10.1080/00927879208824553
- Paul Fong and Bhama Srinivasan, Brauer trees in classical groups, J. Algebra 131 (1990), no. 1, 179–225. MR 1055005, DOI 10.1016/0021-8693(90)90172-K
- Meinolf Geck, Brauer trees of Hecke algebras, Comm. Algebra 20 (1992), no. 10, 2937–2973. MR 1179271, DOI 10.1080/00927879208824499
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592, DOI 10.1090/surv/040.1
- J. A. Green, Walking around the Brauer Tree, J. Austral. Math. Soc. 17 (1974), 197–213. MR 349830, DOI 10.1017/S1446788700016761
- F. Grunewald, A. Jaikin-Zapirain, and P. A. Zalesskii, Cohomological goodness and the profinite completion of Bianchi groups, Duke Math. J. 144 (2008), no. 1, 53–72. MR 2429321, DOI 10.1215/00127094-2008-031
- Gerhard Hiss, The Brauer trees of the Ree groups, Comm. Algebra 19 (1991), no. 3, 871–888. MR 1102991, DOI 10.1080/00927879108824175
- Gerhard Hiss and Frank Lübeck, The Brauer trees of the exceptional Chevalley groups of types $F_4$ and $^2\!E_6$, Arch. Math. (Basel) 70 (1998), no. 1, 16–21. MR 1487449, DOI 10.1007/s000130050159
- Gerhard Hiss, Frank Lübeck, and Gunter Malle, The Brauer trees of the exceptional Chevalley groups of type $E_6$, Manuscripta Math. 87 (1995), no. 1, 131–144. MR 1329444, DOI 10.1007/BF02570465
- Bernhard Keller, On the construction of triangle equivalences, Derived equivalences for group rings, Lecture Notes in Math., vol. 1685, Springer, Berlin, 1998, pp. 155–176. MR 1649844, DOI 10.1007/BFb0096374
- Bernhard Keller, Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra 123 (1998), no. 1-3, 223–273. MR 1492902, DOI 10.1016/S0022-4049(96)00085-0
- Bernhard Keller and Dieter Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 6, 225–228 (French, with English summary). MR 907948
- G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 453885, DOI 10.1007/BF01408569
- I. Marin, Galois actions on complex braid groups, Galois-Teichmüller theory and Arithmetic Geometry, Math. Soc. of Japan , posted on (2012)., DOI 10.2969/aspm/06310337
- Tokushi Nakamura, A note on the $K(\pi ,\,1)$ property of the orbit space of the unitary reflection group $G(m,\,l,\,n)$, Sci. Papers College Arts Sci. Univ. Tokyo 33 (1983), no. 1, 1–6. MR 714667
- Jeremy Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), no. 3, 303–317. MR 1027750, DOI 10.1016/0022-4049(89)90081-9
- Jeremy Rickard, Finite group actions and étale cohomology, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 81–94 (1995). MR 1320604, DOI 10.1007/BF02698896
- Raphaël Rouquier, Complexes de chaînes étales et courbes de Deligne-Lusztig, J. Algebra 257 (2002), no. 2, 482–508 (French, with English summary). MR 1947973, DOI 10.1016/S0021-8693(02)00530-6
- Raphaël Rouquier, Derived equivalences and finite dimensional algebras, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 191–221. MR 2275594
- Jean-Pierre Serre, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author. MR 1867431
- Josephine Shamash, Brauer trees for blocks of cyclic defect in the groups $G_2(q)$ for primes dividing $q^2\pm q+1$, J. Algebra 123 (1989), no. 2, 378–396. MR 1000493, DOI 10.1016/0021-8693(89)90052-5
- T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198. MR 354894, DOI 10.1007/BF01390173
Bibliographic Information
- Olivier Dudas
- Affiliation: Université Denis Diderot – Paris 7, UFR de Mathématiques, Institut de Mathématiques de Jussieu, Case 7012, 75205 Paris Cedex 13, France
- MR Author ID: 883805
- Email: dudas@math.jussieu.fr
- Raphaël Rouquier
- Affiliation: Department of Mathematics, UCLA, Box 951555, Los Angeles, California 90095-1555
- MR Author ID: 353858
- Email: rouquier@math.ucla.edu
- Received by editor(s): October 16, 2012
- Received by editor(s) in revised form: August 16, 2013
- Published electronically: March 25, 2014
- Additional Notes: The first author was supported by the EPSRC, Project No EP/H026568/1 and by Magdalen College, Oxford.
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 27 (2014), 1117-1145
- MSC (2010): Primary 20C33; Secondary 18E30, 20C20
- DOI: https://doi.org/10.1090/S0894-0347-2014-00791-8
- MathSciNet review: 3230819