Cohomology of arithmetic families of $(\varphi , \Gamma )$-modules
HTML articles powered by AMS MathViewer
- by Kiran S. Kedlaya, Jonathan Pottharst and Liang Xiao;
- J. Amer. Math. Soc. 27 (2014), 1043-1115
- DOI: https://doi.org/10.1090/S0894-0347-2014-00794-3
- Published electronically: April 3, 2014
Abstract:
We prove the finiteness and compatibility with base change of the $(\varphi , \Gamma )$-cohomology and the Iwasawa cohomology of arithmetic families of $(\varphi , \Gamma )$-modules. Using this finiteness theorem, we show that a family of Galois representations that is densely pointwise refined in the sense of Mazur is actually trianguline as a family over a large subspace. In the case of the Coleman-Mazur eigencurve, we determine the behavior at all points.References
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR 217085
- Joël Bellaïche, Ranks of Selmer groups in an analytic family, Trans. Amer. Math. Soc. 364 (2012), no. 9, 4735–4761. MR 2922608, DOI 10.1090/S0002-9947-2012-05504-8
- Joël Bellaïche and Gaëtan Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009), xii+314 (English, with English and French summaries). MR 2656025
- R. Bellovin, $p$-adic Hodge theory in rigid analytic families, preprint, arXiv:1306.5685v1.
- Denis Benois, A generalization of Greenberg’s $\scr L$-invariant, Amer. J. Math. 133 (2011), no. 6, 1573–1632. MR 2863371, DOI 10.1353/ajm.2011.0043
- Laurent Berger, An introduction to the theory of $p$-adic representations, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 255–292 (English, with English and French summaries). MR 2023292
- Laurent Berger, Équations différentielles $p$-adiques et $(\phi ,N)$-modules filtrés, Astérisque 319 (2008), 13–38 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493215
- Laurent Berger, Christophe Breuil, and Pierre Colmez (eds.), Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules, Société Mathématique de France, Paris, 2008 (French). Astérisque No. 319 (2008). MR 2482309
- Laurent Berger, Christophe Breuil, and Pierre Colmez (eds.), Représentations $p$-adiques de groupes $p$-adiques I: Répresentations de $\mathrm {GL}_2(\mathbf {Q}_p)$ et $(\varphi ,\Gamma )$-modules, Astérisque 330 (2010).
- Laurent Berger and Pierre Colmez, Familles de représentations de de Rham et monodromie $p$-adique, Astérisque 319 (2008), 303–337 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493221
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- N. Bourbaki, Espaces Vectoriels Topologiques, reprint of the 1981 original, Springer, Berlin, 2007.
- Christophe Breuil and Matthew Emerton, Représentations $p$-adiques ordinaires de $\textrm {GL}_2(\mathbf Q_p)$ et compatibilité local-global, Astérisque 331 (2010), 255–315 (French, with English and French summaries). MR 2667890
- Kevin Buzzard, Eigenvarieties, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 59–120. MR 2392353, DOI 10.1017/CBO9780511721267.004
- Gaëtan Chenevier, Sur la densité des représentations cristallines de $\text {Gal}(\overline {\Bbb Q}_p/\Bbb Q_p)$, Math. Ann. 355 (2013), no. 4, 1469–1525 (French, with English summary). MR 3037022, DOI 10.1007/s00208-012-0815-z
- Frédéric Cherbonnier and Pierre Colmez, Théorie d’Iwasawa des représentations $p$-adiques d’un corps local, J. Amer. Math. Soc. 12 (1999), no. 1, 241–268 (French). MR 1626273, DOI 10.1090/S0894-0347-99-00281-7
- Robert F. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1996), no. 1-3, 215–241. MR 1369416, DOI 10.1007/s002220050051
- Pierre Colmez, Théorie d’Iwasawa des représentations de de Rham d’un corps local, Ann. of Math. (2) 148 (1998), no. 2, 485–571 (French). MR 1668555, DOI 10.2307/121003
- Pierre Colmez, Représentations triangulines de dimension 2, Astérisque 319 (2008), 213–258 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493219
- Pierre Colmez, Représentations de $\textrm {GL}_2(\mathbf Q_p)$ et $(\phi ,\Gamma )$-modules, Astérisque 330 (2010), 281–509 (French, with English and French summaries). MR 2642409
- Pierre Colmez, $(\phi ,\Gamma )$-modules et représentations du mirabolique de $\textrm {GL}_2(\mathbf Q_p)$, Astérisque 330 (2010), 61–153 (French, with English and French summaries). MR 2642405
- Brian Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 473–541 (English, with English and French summaries). MR 1697371, DOI 10.5802/aif.1681
- Richard Crew, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 6, 717–763 (English, with English and French summaries). MR 1664230, DOI 10.1016/S0012-9593(99)80001-9
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Jean-Marc Fontaine, Représentations $p$-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249–309 (French). MR 1106901
- J.-M. Fontaine and Y. Ouyang, Theory of $p$-adic Galois representations, book to appear, downloaded from http://staff.ustc.edu.cn/~yiouyang/galoisrep.pdf on 6 August 2013.
- Ralph Greenberg, Iwasawa theory and $p$-adic deformations of motives, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 193–223. MR 1265554, DOI 10.1090/pspum/055.2/1265554
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- E. Hellmann, Families of trianguline representations and finite slope spaces, preprint, arXiv:1202.4408v1.
- Laurent Herr, Sur la cohomologie galoisienne des corps $p$-adiques, Bull. Soc. Math. France 126 (1998), no. 4, 563–600 (French, with English and French summaries). MR 1693457, DOI 10.24033/bsmf.2337
- Laurent Herr, Une approche nouvelle de la dualité locale de Tate, Math. Ann. 320 (2001), no. 2, 307–337 (French). MR 1839766, DOI 10.1007/PL00004476
- Kiran S. Kedlaya, Finiteness of rigid cohomology with coefficients, Duke Math. J. 134 (2006), no. 1, 15–97. MR 2239343, DOI 10.1215/S0012-7094-06-13412-9
- Kiran S. Kedlaya, Slope filtrations for relative Frobenius, Astérisque 319 (2008), 259–301 (English, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493220
- Kiran Kedlaya and Ruochuan Liu, On families of $\phi$, $\Gamma$-modules, Algebra Number Theory 4 (2010), no. 7, 943–967. MR 2776879, DOI 10.2140/ant.2010.4.943
- Mark Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math. 153 (2003), no. 2, 373–454. MR 1992017, DOI 10.1007/s00222-003-0293-8
- Ruochuan Liu, Cohomology and duality for $(\phi ,\Gamma )$-modules over the Robba ring, Int. Math. Res. Not. IMRN 3 (2008), Art. ID rnm150, 32. MR 2416996, DOI 10.1093/imrn/rnm150
- R. Liu, Triangulation of refined families, preprint, arXiv:1202.2188v3.
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Kentaro Nakamura, Classification of two-dimensional split trianguline representations of $p$-adic fields, Compos. Math. 145 (2009), no. 4, 865–914. MR 2521248, DOI 10.1112/S0010437X09004059
- K. Nakamura, Deformations of trianguline $\mathbb {B}$-pairs and Zariski density of two dimensional crystalline representations, preprint. arXiv:1006.4891v5.
- Jan Nekovář, Selmer complexes, Astérisque 310 (2006), viii+559 (English, with English and French summaries). MR 2333680
- Jonathan Pottharst, Analytic families of finite-slope Selmer groups, Algebra Number Theory 7 (2013), no. 7, 1571–1612. MR 3117501, DOI 10.2140/ant.2013.7.1571
- J. Pottharst, Cyclotomic Iwasawa theory of motives, preprint.
- M. Raynaud, Flat modules in algebraic geometry, Compositio Math. 24 (1972), 11–31. MR 302645
- Peter Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1869547, DOI 10.1007/978-3-662-04728-6
- Peter Schneider and Jeremy Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. MR 1990669, DOI 10.1007/s00222-002-0284-1
Bibliographic Information
- Kiran S. Kedlaya
- Affiliation: Department of Mathematics, University of California, San Diego, La Jolla, California 92093
- MR Author ID: 349028
- ORCID: 0000-0001-8700-8758
- Email: kedlaya@ucsd.edu
- Jonathan Pottharst
- Affiliation: 5 Redwood Street, Boston, Massachusetts 02122
- MR Author ID: 894842
- Email: jay@vbrt.org
- Liang Xiao
- Affiliation: Department of Mathematics, University of California, Irvine, Rowland Hall 340, Irvine, California 92697
- MR Author ID: 888789
- Email: lxiao@math.uci.edu
- Received by editor(s): June 26, 2012
- Received by editor(s) in revised form: August 14, 2013
- Published electronically: April 3, 2014
- © Copyright 2014 by Kiran S. Kedlaya, Jonathan Pottharst, and Liang Xiao
- Journal: J. Amer. Math. Soc. 27 (2014), 1043-1115
- MSC (2010): Primary 11F33, 11R23, 11S25, 11S31
- DOI: https://doi.org/10.1090/S0894-0347-2014-00794-3
- MathSciNet review: 3821175