Semi-infinite Schubert varieties and quantum $K$-theory of flag manifolds
HTML articles powered by AMS MathViewer
- by Alexander Braverman and Michael Finkelberg;
- J. Amer. Math. Soc. 27 (2014), 1147-1168
- DOI: https://doi.org/10.1090/S0894-0347-2014-00797-9
- Published electronically: June 6, 2014
- PDF | Request permission
Abstract:
Let $\mathfrak {g}$ be a semi-simple Lie algebra over $\mathbb {C}$ and let $\mathcal {B}_{\mathfrak {g}}$ be its flag variety. In this paper we study the spaces $Z^{\alpha }_{\mathfrak {g}}$ of based quasi-maps $\mathbb {P}^1\to \mathcal {B}_{\mathfrak {g}}$ (introduced by Finkelberg and MirkoviÄ in 1999) as well as their affine versions (corresponding to $\mathfrak {g}$ being untwisted affine algebra) introduced by Braverman et al. in 2006. The purpose of this paper is two-fold. First we study the singularities of the above spaces (as was explained by Finkelberg and MirkoviÄ in 1999 and Braverman in 2006 they are supposed to model singularities of the not rigorously defined âsemi-infinite Schubert varietiesâ). We show that $Z^{\alpha }_{\mathfrak {g}}$ is normal and when $\mathfrak {g}$ is simply laced, $Z^{\alpha }_{\mathfrak {g}}$ is Gorenstein and has rational singularities; some weaker results are proved also in the affine case.
The second purpose is to study the character of the ring of functions on $Z^{\alpha }_{\mathfrak {g}}$. When $\mathfrak {g}$ is finite-dimensional and simply laced we show that the generating function of these characters satisfies the âfermionic formulaâ version of quantum difference Toda equation, thus extending the results for $\mathfrak {g}=\mathfrak {sl}(N)$ from Givental and Lee in 2003 and Braverman and Finkelberg in 2005; in view of the first part this also proves a conjecture from Givental and Lee in 2003 describing the quantum $K$-theory of $\mathcal {B}_{\mathfrak {g}}$ in terms of the Langlands dual quantum group $U_q(\mathfrak {\check {g}})$ (for non-simply laced $\mathfrak {g}$ certain modification of that conjecture is necessary). Similar analysis (modulo certain assumptions) is performed for affine $\mathfrak {g}$, extending the results of Braverman and Finkelberg.
References
- A. Beilinson and V. Drinfeld, Quantization of Hitchinâs Hamiltonians and Hecke eigenâsheaves. Preprint, available at http://www.math.uchicago.edu/$\sim$mitya/langlands.html.
- Indranil Biswas, Parabolic bundles as orbifold bundles, Duke Math. J. 88 (1997), no. 2, 305â325. MR 1455522, DOI 10.1215/S0012-7094-97-08812-8
- Alexander Braverman, Spaces of quasi-maps into the flag varieties and their applications, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., ZĂŒrich, 2006, pp. 1145â1170. MR 2275639
- Alexander Braverman, Instanton counting via affine Lie algebras. I. Equivariant $J$-functions of (affine) flag manifolds and Whittaker vectors, Algebraic structures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 113â132. MR 2095901, DOI 10.1090/crmp/038/04
- A. Braverman and P. Etingof, Instanton counting via affine Lie algebras. II. From Whittaker vectors to the Seiberg-Witten prepotential, Studies in Lie theory, Progr. Math., vol. 243, BirkhĂ€user Boston, Boston, MA, 2006, pp. 61â78. MR 2214246, DOI 10.1007/0-8176-4478-4_{5}
- Alexander Braverman, Michael Finkelberg, and Dennis Gaitsgory, Uhlenbeck spaces via affine Lie algebras, The unity of mathematics, Progr. Math., vol. 244, BirkhĂ€user Boston, Boston, MA, 2006, pp. 17â135. MR 2181803, DOI 10.1007/0-8176-4467-9_{2}
- Alexander Braverman and Michael Finkelberg, Finite difference quantum Toda lattice via equivariant $K$-theory, Transform. Groups 10 (2005), no. 3-4, 363â386. MR 2183117, DOI 10.1007/s00031-005-0402-4
- Alexander Braverman and Michael Finkelberg, Pursuing the double affine Grassmannian II: Convolution, Adv. Math. 230 (2012), no. 1, 414â432. MR 2900549, DOI 10.1016/j.aim.2011.12.007
- Alexander Braverman and David Kazhdan, Some examples of Hecke algebras for two-dimensional local fields, Nagoya Math. J. 184 (2006), 57â84. MR 2285231, DOI 10.1017/S0027763000009314
- RenĂ©e Elkik, RationalitĂ© des singularitĂ©s canoniques, Invent. Math. 64 (1981), no. 1, 1â6 (French). MR 621766, DOI 10.1007/BF01393930
- Pavel Etingof, Whittaker functions on quantum groups and $q$-deformed Toda operators, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, Amer. Math. Soc., Providence, RI, 1999, pp. 9â25. MR 1729357, DOI 10.1090/trans2/194/02
- Gerd Faltings, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. (JEMS) 5 (2003), no. 1, 41â68. MR 1961134, DOI 10.1007/s10097-002-0045-x
- Boris Feigin, Michael Finkelberg, Alexander Kuznetsov, and Ivan MirkoviÄ, Semi-infinite flags. II. Local and global intersection cohomology of quasimapsâ spaces, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, Amer. Math. Soc., Providence, RI, 1999, pp. 113â148. MR 1729361, DOI 10.1090/trans2/194/06
- Boris Feigin, Evgeny Feigin, Michio Jimbo, Tetsuji Miwa, and Evgeny Mukhin, Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian, Lett. Math. Phys. 88 (2009), no. 1-3, 39â77. MR 2512140, DOI 10.1007/s11005-009-0300-0
- Boris Feigin, Michael Finkelberg, Igor Frenkel, and Leonid Rybnikov, Gelfand-Tsetlin algebras and cohomology rings of Laumon spaces, Selecta Math. (N.S.) 17 (2011), no. 2, 337â361. MR 2803846, DOI 10.1007/s00029-010-0045-8
- Michael Finkelberg, Alexander Kuznetsov, Nikita Markarian, and Ivan MirkoviÄ, A note on a symplectic structure on the space of $G$-monopoles, Comm. Math. Phys. 201 (1999), no. 2, 411â421. MR 1682218, DOI 10.1007/s002200050560
- Michael Finkelberg and Ivan MirkoviÄ, Semi-infinite flags. I. Case of global curve $\mathbf P^1$, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, Amer. Math. Soc., Providence, RI, 1999, pp. 81â112. MR 1729360, DOI 10.1090/trans2/194/05
- M. Finkelberg and L. Rybnikov, Quantization of Drinfeld Zastava in type $A$. preprint math/1009.0676, to appear in JEMS.
- Alexander Givental and Yuan-Pin Lee, Quantum $K$-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math. 151 (2003), no. 1, 193â219. MR 1943747, DOI 10.1007/s00222-002-0250-y
- A. Grothendieck, Sur la classification des fibrĂ©s holomorphes sur la sphĂšre de Riemann, Amer. J. Math. 79 (1957), 121â138 (French). MR 87176, DOI 10.2307/2372388
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), no. 1, 21â62. MR 1317626, DOI 10.1215/S0012-7094-95-07702-3
- Bumsig Kim, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, Ann. of Math. (2) 149 (1999), no. 1, 129â148. MR 1680543, DOI 10.2307/121021
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, BirkhĂ€user Boston, Boston, MA, 1995, pp. 335â368. MR 1363062, DOI 10.1007/978-1-4612-4264-2_{1}2
- Y.-P. Lee and R. Pandharipande, A reconstruction theorem in quantum cohomology and quantum $K$-theory, Amer. J. Math. 126 (2004), no. 6, 1367â1379. MR 2102400, DOI 10.1353/ajm.2004.0049
- I. MirkoviÄ and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95â143. MR 2342692, DOI 10.4007/annals.2007.166.95
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Nikita A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), no. 5, 831â864. MR 2045303, DOI 10.4310/ATMP.2003.v7.n5.a4
- A. Ramanathan, Deformations of principal bundles on the projective line, Invent. Math. 71 (1983), no. 1, 165â191. MR 688263, DOI 10.1007/BF01393340
- A. Ramanathan, Moduli for principal bundles over algebraic curves. I, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), no. 3, 301â328. MR 1420170, DOI 10.1007/BF02867438
- Alexey Sevostyanov, Regular nilpotent elements and quantum groups, Comm. Math. Phys. 204 (1999), no. 1, 1â16. MR 1705661, DOI 10.1007/s002200050634
- Z. Zhu, The geometrical Satake correspondence for ramified groups, available at arXiv:1107.5762.
Bibliographic Information
- Alexander Braverman
- Affiliation: Department of Mathematics, Brown University, 151 Thayer Street, Providence, Rhode Island 02912
- MR Author ID: 352797
- Email: braval@math.brown.edu
- Michael Finkelberg
- Affiliation: IMU, IITP, and National Research University Higher School of Economics Department of Mathematics, 20 Myasnitskaya st, Moscow 101000, Russia
- MR Author ID: 304673
- Email: fnklberg@gmail.com
- Received by editor(s): December 6, 2011
- Received by editor(s) in revised form: June 16, 2013, and September 6, 2013
- Published electronically: June 6, 2014
- © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 27 (2014), 1147-1168
- MSC (2010): Primary 17B37; Secondary 14N35, 19L47, 37J35
- DOI: https://doi.org/10.1090/S0894-0347-2014-00797-9
- MathSciNet review: 3230820