Parity sheaves
HTML articles powered by AMS MathViewer
- by Daniel Juteau, Carl Mautner and Geordie Williamson;
- J. Amer. Math. Soc. 27 (2014), 1169-1212
- DOI: https://doi.org/10.1090/S0894-0347-2014-00804-3
- Published electronically: May 21, 2014
- PDF | Request permission
Abstract:
Given a stratified variety $X$ with strata satisfying a cohomological parity-vanishing condition, we define and show the uniqueness of “parity sheaves,” which are objects in the constructible derived category of sheaves with coefficients in an arbitrary field or complete discrete valuation ring. This construction depends on the choice of a parity function on the strata.
If $X$ admits a resolution also satisfying a parity condition, then the direct image of the constant sheaf decomposes as a direct sum of parity sheaves, and the multiplicities of the indecomposable summands are encoded in certain refined intersection forms appearing in the work of de Cataldo and Migliorini. We give a criterion for the Decomposition Theorem to hold in the semi-small case.
Our framework applies to many stratified varieties arising in representation theory such as generalised flag varieties, toric varieties, and nilpotent cones. Moreover, parity sheaves often correspond to interesting objects in representation theory. For example, on flag varieties we recover in a unified way several well-known complexes of sheaves. For one choice of parity function we obtain the indecomposable tilting perverse sheaves. For another, when using coefficients of characteristic zero, we recover the intersection cohomology sheaves and in arbitrary characteristic the special sheaves of Soergel, which are used by Fiebig in his proof of Lusztig’s conjecture.
References
- Pramod N. Achar, Perverse coherent sheaves on the nilpotent cone in good characteristic, Recent developments in Lie algebras, groups and representation theory, Proc. Sympos. Pure Math., vol. 86, Amer. Math. Soc., Providence, RI, 2012, pp. 1–23. MR 2976995, DOI 10.1090/pspum/086/1409
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Gottfried Barthel, Jean-Paul Brasselet, Karl-Heinz Fieseler, and Ludger Kaup, Equivariant intersection cohomology of toric varieties, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 45–68. MR 1718136, DOI 10.1090/conm/241/03627
- A. Beilinson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), no. 3, 547–557, 782 (English, with English and Russian summaries). MR 2119139, DOI 10.17323/1609-4514-2004-4-3-547-557
- Michel Brion and Roy Joshua, Vanishing of odd-dimensional intersection cohomology. II, Math. Ann. 321 (2001), no. 2, 399–437. MR 1866494, DOI 10.1007/s002080100235
- Arnaud Beauville and Yves Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), no. 2, 385–419. MR 1289330, DOI 10.1007/BF02101707
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23–74. MR 737927
- Tom Braden and Robert MacPherson, From moment graphs to intersection cohomology, Math. Ann. 321 (2001), no. 3, 533–551. MR 1871967, DOI 10.1007/s002080100232
- Jonathan Brundan and Victor Ostrik, Cohomology of Spaltenstein varieties, Transform. Groups 16 (2011), no. 3, 619–648. MR 2827037, DOI 10.1007/s00031-011-9149-2
- Armand Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tohoku Math. J. (2) 13 (1961), 216–240 (French). MR 147579, DOI 10.2748/tmj/1178244298
- Laurent Bonavero and Michel Brion (eds.), Geometry of toric varieties, Séminaires et Congrès [Seminars and Congresses], vol. 6, Société Mathématique de France, Paris, 2002. Lectures from the Summer School held in Grenoble, June 19–July 7, 2000. MR 2072676
- Jean-Luc Brylinski and Bin Zhang, Equivariant Todd classes for toric varieties (2003), available at arXiv/0311318.
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322, DOI 10.1090/gsm/124
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511–534. MR 1245719, DOI 10.2748/tmj/1178225846
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- C. De Concini, G. Lusztig, and C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34. MR 924700, DOI 10.1090/S0894-0347-1988-0924700-2
- Mark Andrea A. de Cataldo and Luca Migliorini, The hard Lefschetz theorem and the topology of semismall maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 759–772 (English, with English and French summaries). MR 1951443, DOI 10.1016/S0012-9593(02)01108-4
- Mark Andrea A. de Cataldo and Luca Migliorini, The Hodge theory of algebraic maps, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 693–750 (English, with English and French summaries). MR 2195257, DOI 10.1016/j.ansens.2005.07.001
- Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287–301 (French). MR 342522, DOI 10.1007/BF01418790
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Lucas Fresse, Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of $B$-orbits, J. Math. Soc. Japan 65 (2013), no. 3, 967–992. MR 3084986
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Peter Fiebig and Geordie Williamson, Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties, available at arXiv:1008.0719. To appear in Ann. Inst. Fourier.
- Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR 1489894, DOI 10.1007/s002220050197
- S. Gaussent and P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (2005), no. 1, 35–88. MR 2126496, DOI 10.1215/S0012-7094-04-12712-5
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- Ian Grojnowski, Affine $\mathfrak {sl}_p$ controls the representation theory of the symmetric groups and related Hecke algebras (1999), available at arXiv:math/9907129.
- Sebastian Herpel, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3753–3774. MR 3042602, DOI 10.1090/S0002-9947-2012-05745-X
- Carl Mautner Daniel Juteau and Geordie Williamson, Parity sheaves and tilting modules. In preparation.
- Daniel Juteau, Cohomology of the minimal nilpotent orbit, Transform. Groups 13 (2008), no. 2, 355–387. MR 2426135, DOI 10.1007/s00031-008-9009-x
- Daniel Juteau, Modular representations of reductive groups and geometry of affine Grassmannians (2008), available at arXiv:0804.2041.
- Daniel Juteau, Decomposition numbers for perverse sheaves, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 3, 1177–1229 (English, with English and French summaries). MR 2543666, DOI 10.5802/aif.2461
- V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math. 80 (1985), no. 1, 69–79. MR 784529, DOI 10.1007/BF01388548
- David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980, pp. 185–203. MR 573434
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Jue Le and Xiao-Wu Chen, Karoubianness of a triangulated category, J. Algebra 310 (2007), no. 1, 452–457. MR 2307804, DOI 10.1016/j.jalgebra.2006.11.027
- George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1–63. MR 825086, DOI 10.1016/0001-8708(86)90036-8
- Ruslan Maksimau, Canonical basis, KLR-algebras and parity sheaves (2013), available at arXiv:1301.6261.
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI 10.4007/annals.2007.166.95
- David Nadler, Perverse sheaves on real loop Grassmannians, Invent. Math. 159 (2005), no. 1, 1–73. MR 2142332, DOI 10.1007/s00222-004-0382-3
- D. I. Panyushev, Rationality of singularities and the Gorenstein property of nilpotent orbits, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 76–78 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 3, 225–226 (1992). MR 1139878, DOI 10.1007/BF01085494
- R. W. Richardson Jr., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. (2) 86 (1967), 1–15. MR 217079, DOI 10.2307/1970359
- Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no. 2, 209–223. MR 1128706, DOI 10.1007/BF02571521
- M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of $H$-spaces, Bull. Amer. Math. Soc. 71 (1965), 872–875. MR 208596, DOI 10.1090/S0002-9904-1965-11420-3
- Simon Riche, Wolfgang Soergel, and Geordie Williamson, Modular Koszul duality, available at arXiv:1209.3760. To appear in Compos. Math.
- Jean-Pierre Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967 (French). MR 232867
- Wolfgang Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, J. Pure Appl. Algebra 152 (2000), no. 1-3, 311–335. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). MR 1784005, DOI 10.1016/S0022-4049(99)00138-3
- Wolfgang Soergel, Langlands’ philosophy and Koszul duality, Algebra—representation theory (Constanta, 2000), vol. 28, Kluwer Acad. Publ., Dordrecht, 2001. MR1858045 (2002j:22019)
- Eric N. Sommers, Equivalence classes of ideals in the nilradical of a Borel subalgebra, Nagoya Math. J. 183 (2006), 161–185. MR 2253889, DOI 10.1017/S0027763000009296
- T. A. Springer, Quelques applications de la cohomologie d’intersection, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 249–273 (French). MR 689533
- Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR 354892, DOI 10.1016/0001-8708(75)90125-5
- Kari Vilonen and Geordie Williamson, Characteristic cycles and decomposition numbers, available at arXiv:1208.1198. To appear in Math. Res. Let.
- Weiqiang Wang, Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), no. 3, 935–936. MR 1610801, DOI 10.1090/S0002-9939-99-04946-1
- Geordie Williamson and Tom Braden, Modular intersection cohomology complexes on flag varieties, Math. Z. 272 (2012), no. 3-4, 697–727. MR 2995137, DOI 10.1007/s00209-011-0955-y
- Geordie Williamson, Singular soergel bimodules. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg, 2008, available at http://www.freidok.uni-freiburg.de., DOI 10.1093/imrn/rnq263
Bibliographic Information
- Daniel Juteau
- Affiliation: LMNO, Université de Caen Basse-Normandie, CNRS, BP 5186, 14032 Caen, France
- Email: daniel.juteau@unicaen.fr
- Carl Mautner
- Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- MR Author ID: 1062385
- Email: cmautner@mpim-bonn.mpg.de
- Geordie Williamson
- Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- MR Author ID: 845262
- Email: geordie@mpim-bonn.mpg.de
- Received by editor(s): November 5, 2012
- Received by editor(s) in revised form: October 21, 2013
- Published electronically: May 21, 2014
- Additional Notes: The first author was supported by ANR Grant No. ANR-09-JCJC-0102-01.
The second author was supported by an NSF postdoctoral fellowship. - © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 27 (2014), 1169-1212
- MSC (2010): Primary 55N33, 20C20
- DOI: https://doi.org/10.1090/S0894-0347-2014-00804-3
- MathSciNet review: 3230821