Fundamental groups of links of isolated singularities
HTML articles powered by AMS MathViewer
- by Michael Kapovich and János Kollár;
- J. Amer. Math. Soc. 27 (2014), 929-952
- DOI: https://doi.org/10.1090/S0894-0347-2014-00807-9
- Published electronically: May 22, 2014
- PDF | Request permission
Abstract:
We study fundamental groups of projective varieties with normal crossing singularities and of germs of complex singularities. We prove that for every finitely-presented group $G$ there is a complex projective surface $S$ with simple normal crossing singularities only, so that the fundamental group of $S$ is isomorphic to $G$. We use this to construct 3-dimensional isolated complex singularities so that the fundamental group of the link is isomorphic to $G$. Lastly, we prove that a finitely-presented group $G$ is ${\mathbb Q}$-superperfect (has vanishing rational homology in dimensions 1 and 2) if and only if $G$ is isomorphic to the fundamental group of the link of a rational 6-dimensional complex singularity.References
- J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, vol. 44, American Mathematical Society, Providence, RI, 1996. MR 1379330, DOI 10.1090/surv/044
- D. Arapura, P. Bakhatry, and J. Włodarczyk, The combinatorial part of the cohomology of a singular variety (2009), available at arXiv:0902.4234.
- M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. MR 260747, DOI 10.2307/1970602
- A. J. Berrick, A topologist’s view of perfect and acyclic groups, Invitations to geometry and topology, Oxf. Grad. Texts Math., vol. 7, Oxford Univ. Press, Oxford, 2002, pp. 1–28. MR 1967745
- Martin R. Bridson and Fritz J. Grunewald, Grothendieck’s problems concerning profinite completions and representations of groups, Ann. of Math. (2) 160 (2004), no. 1, 359–373. MR 2119723, DOI 10.4007/annals.2004.160.359
- Stewart S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc. 67 (1961), 389–390. MR 149491, DOI 10.1090/S0002-9904-1961-10631-9
- Colin M. Campbell, George Havas, Colin Ramsay, and Edmund F. Robertson, Nice efficient presentations for all small simple groups and their covers, LMS J. Comput. Math. 7 (2004), 266–283. MR 2118175, DOI 10.1112/S1461157000001121
- E. Ballico, F. Catanese, and C. Ciliberto (eds.), Classification of irregular varieties, Lecture Notes in Mathematics, vol. 1515, Springer-Verlag, Berlin, 1992. Minimal models and abelian varieties. MR 1180332, DOI 10.1007/BFb0098332
- Jon Michael Corson, Complexes of groups, Proc. London Math. Soc. (3) 65 (1992), no. 1, 199–224. MR 1162493, DOI 10.1112/plms/s3-65.1.199
- Kevin Corlette and Carlos Simpson, On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math. 144 (2008), no. 5, 1271–1331. MR 2457528, DOI 10.1112/S0010437X08003618
- Michael W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. MR 2360474
- Alexandru Dimca, Ştefan Papadima, and Alexander I. Suciu, Topology and geometry of cohomology jump loci, Duke Math. J. 148 (2009), no. 3, 405–457. MR 2527322, DOI 10.1215/00127094-2009-030
- A. N. Dranišnikov and D. Repovš, Embeddings up to homotopy type in Euclidean space, Bull. Austral. Math. Soc. 47 (1993), no. 1, 145–148. MR 1201430, DOI 10.1017/S0004972700012338
- Daniel Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), no. 4, 553–585 (French, with English and French summaries). MR 2044495, DOI 10.24033/bsmf.2455
- Robert Friedman and David R. Morrison (eds.), The birational geometry of degenerations, Progress in Mathematics, vol. 29, Birkhäuser, Boston, MA, 1983. Based on papers presented at the Summer Algebraic Geometry Seminar held at Harvard University, Cambridge, Mass. June 11–July 29, 1981. MR 690261
- Steven Fortune, Voronoi diagrams and Delaunay triangulations, Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 377–388. MR 1730176
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- Gerald Leonard Gordon, On a simplicial complex associated to the monodromy, Trans. Amer. Math. Soc. 261 (1980), no. 1, 93–101. MR 576865, DOI 10.1090/S0002-9947-1980-0576865-1
- Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $(SGA$ $2)$, Advanced Studies in Pure Mathematics, Vol. 2, North-Holland Publishing Co., Amsterdam; Masson & Cie, Editeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962. MR 476737
- Phillip Griffiths and Wilfried Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Tata Inst. Fundam. Res. Stud. Math., No. 7, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, Bombay, 1975, pp. 31–127. MR 419850
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Graham Higman, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951), 61–64. MR 38348, DOI 10.1112/jlms/s1-26.1.61
- Morris W. Hirsch, Smooth regular neighborhoods, Ann. of Math. (2) 76 (1962), 524–530. MR 149492, DOI 10.2307/1970372
- Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 6510, DOI 10.1007/BF02565622
- Jean-Claude Hausmann and Shmuel Weinberger, Caractéristiques d’Euler et groupes fondamentaux des variétés de dimension $4$, Comment. Math. Helv. 60 (1985), no. 1, 139–144 (French). MR 787667, DOI 10.1007/BF02567405
- Shihoko Ishii, On isolated Gorenstein singularities, Math. Ann. 270 (1985), no. 4, 541–554. MR 776171, DOI 10.1007/BF01455303
- Michael Kapovich, Conformally flat metrics on 4-manifolds, J. Differential Geom. 66 (2004), no. 2, 289–301. MR 2106126
- Michel A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67–72. MR 253347, DOI 10.1090/S0002-9947-1969-0253347-3
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- Michael Kapovich and John J. Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 5–95 (1999). MR 1733326, DOI 10.1007/BF02701766
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), no. 1, 177–215. MR 1223229, DOI 10.1007/BF01244307
- János Kollár, Quotients by finite equivalence relations (2008), available at arXiv:0812.3608.
- János Kollár, New examples of terminal and log canonical singularities (2011), available at arXiv:1107.2864.
- Vik. S. Kulikov, Degenerations of $K3$ surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 5, 1008–1042, 1199 (Russian). MR 506296
- Charles Livingston, Four-manifolds of large negative deficiency, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 107–115. MR 2127231, DOI 10.1017/S0305004104008011
- John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137–204. MR 516917, DOI 10.1007/BF02684316
- David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22. MR 153682, DOI 10.1007/BF02698717
- Sam Payne, Lecture at MSRI (2009). http://www.msri.org/web/msri/online-videos/-/video/showVideo/3674.
- Sam Payne, Boundary complexes and weight filtrations (2011), available at arXiv:1109.4286.
- Ulf Persson, On degenerations of algebraic surfaces, Mem. Amer. Math. Soc. 11 (1977), no. 189, xv+144. MR 466149, DOI 10.1090/memo/0189
- Anthony Phillips, Submersions of open manifolds, Topology 6 (1967), 171–206. MR 208611, DOI 10.1016/0040-9383(67)90034-1
- Gopal Prasad and Sai-Kee Yeung, Fake projective planes, Invent. Math. 168 (2007), no. 2, 321–370. MR 2289867, DOI 10.1007/s00222-007-0034-5
- Carlos Simpson, Local systems on proper algebraic $V$-manifolds, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1675–1759. MR 2918179, DOI 10.4310/PAMQ.2011.v7.n4.a27
- J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513–536. MR 713277, DOI 10.1090/pspum/040.2/713277
- D. A. Stepanov, A note on resolution of rational and hypersurface singularities, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2647–2654. MR 2399025, DOI 10.1090/S0002-9939-08-09289-7
- Shigeharu Takayama, Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math. 14 (2003), no. 8, 825–836. MR 2013147, DOI 10.1142/S0129167X0300196X
- Amaury Thuillier, Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math. 123 (2007), no. 4, 381–451 (French, with English summary). MR 2320738, DOI 10.1007/s00229-007-0094-2
- Domingo Toledo, Projective varieties with non-residually finite fundamental group, Inst. Hautes Études Sci. Publ. Math. 77 (1993), 103–119. MR 1249171, DOI 10.1007/BF02699189
- Jarosław Włodarczyk, Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003), no. 2, 223–331. MR 2013783, DOI 10.1007/s00222-003-0305-8
Bibliographic Information
- Michael Kapovich
- Affiliation: Department of Mathematics, University of California, Davis, California 95616
- MR Author ID: 98110
- Email: kapovich@math.ucdavis.edu
- János Kollár
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
- MR Author ID: 104280
- Email: kollar@math.princeton.edu
- Received by editor(s): January 9, 2012
- Received by editor(s) in revised form: September 19, 2012, February 19, 2013, and February 20, 2013
- Published electronically: May 22, 2014
- © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 27 (2014), 929-952
- MSC (2010): Primary 14B05, 14J17, 14F35; Secondary 20F05, 53C55
- DOI: https://doi.org/10.1090/S0894-0347-2014-00807-9
- MathSciNet review: 3230815