Monotonicity of entropy for real multimodal maps
HTML articles powered by AMS MathViewer
- by Henk Bruin and Sebastian van Strien;
- J. Amer. Math. Soc. 28 (2015), 1-61
- DOI: https://doi.org/10.1090/S0894-0347-2014-00795-5
- Published electronically: June 23, 2014
- PDF | Request permission
Abstract:
In 1992, Milnor posed the Monotonicity Conjecture that within a family of real multimodal polynomial interval maps with only real critical points, the isentropes, i.e., the sets of parameters for which the topological entropy is constant, are connected. This conjecture was already proved in the mid-1980s for quadratic maps by a number of different methods, see A. Douady (1993, 1995), A. Douady and J.H. Hubbard (1984, 1985), W. de Melo and S. van Strein (1993), J. Milnor and W. Thurston (1986, 1988), and M. Tsujii (2000). In 2000, Milnor and Tresser, provided a proof for the case of cubic maps. In this paper we will prove the general case of this 20 year old conjecture.References
- Louis Block and James Keesling, Computing the topological entropy of maps of the interval with three monotone pieces, J. Statist. Phys. 66 (1992), no. 3-4, 755–774. MR 1151977, DOI 10.1007/BF01055699
- Louis Block and Dennis Ledis, Topological conjugacy, transitivity, and patterns, Topology and its Applications 167 (2014), 53–61., DOI 10.1016/j.topol.2014.03.003
- Henk Bruin, Non-monotonicity of entropy of interval maps, Phys. Lett. A 202 (1995), no. 5-6, 359–362. MR 1336987, DOI 10.1016/0375-9601(95)00362-7
- Henk Bruin and S. van Strien, On the structure of isentropes of polynomial maps, Dynamical Systems: An International Journal 28 (2013), no. 5-6, 381–392., DOI 10.1080/14689367.2013.822458
- Philip Boyland, Semiconjugacies to angle-doubling, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1299–1307. MR 2199172, DOI 10.1090/S0002-9939-05-08381-4
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Davoud Cheraghi and Sebastian van Strien, Towards Tresser’s conjecture. In preparation.
- Silvina P. Dawson, Roza Galeeva, John Milnor, and Charles Tresser, A monotonicity conjecture for real cubic maps, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 165–183. MR 1351522
- Adrien Douady, Topological entropy of unimodal maps: monotonicity for quadratic polynomials, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 65–87. MR 1351519
- Adrien Douady and John Hamal Hubbard, Etude dynamique des polynômes quadratiques complexes I & II, Publ. Mat. d’Orsay (1984 & 1985).
- Adam Epstein, Transversality in holomorphic dynamics. Preliminary version available from http://www.warwick.ac.uk/$\sim$mases/Transversality.pdf.
- Roza Galeeva, Marco Martens, and Charles Tresser, Inducing, slopes, and conjugacy classes, Israel J. Math. 99 (1997), 123–147. MR 1469090, DOI 10.1007/BF02760679
- Jacek Graczyk and Grzegorz Światek, Generic hyperbolicity in the logistic family, Ann. of Math. (2) 146 (1997), no. 1, 1–52. MR 1469316, DOI 10.2307/2951831
- Peter Haïssinsky, Chirurgie parabolique, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 2, 195–198 (French, with English and French summaries). MR 1645124, DOI 10.1016/S0764-4442(98)80088-8
- Peter Haïssinsky, Déformation $J$-équivalente de polynômes géometriquement finis, Fund. Math. 163 (2000), no. 2, 131–141 (French, with English summary). MR 1752100, DOI 10.4064/fm-163-2-131-141
- Christopher Arthur Heckman, Monotonicity and the construction of quasiconformal conjugacies in the real cubic family, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–State University of New York at Stony Brook. MR 2695156
- Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II, Israel J. Math. 38 (1981), no. 1-2, 107–115. MR 599481, DOI 10.1007/BF02761854
- Ittai Kan, Hüseyin Koçak, and James A. Yorke, Antimonotonicity: concurrent creation and annihilation of periodic orbits, Ann. of Math. (2) 136 (1992), no. 2, 219–252. MR 1185119, DOI 10.2307/2946605
- S. F. Kolyada, One-parameter families of mappings of an interval with a negative Schwartzian derivative which violate the monotonicity of bifurcations, Ukrain. Mat. Zh. 41 (1989), no. 2, 258–261, 288 (Russian); English transl., Ukrainian Math. J. 41 (1989), no. 2, 230–233. MR 992831, DOI 10.1007/BF01060393
- O. Kozlovski, W. Shen, and S. van Strien, Rigidity for real polynomials, Ann. of Math. (2) 165 (2007), no. 3, 749–841. MR 2335796, DOI 10.4007/annals.2007.165.749
- O. Kozlovski, W. Shen, and S. van Strien, Density of hyperbolicity in dimension one, Ann. of Math. (2) 166 (2007), no. 1, 145–182. MR 2342693, DOI 10.4007/annals.2007.166.145
- Genadi Levin, Multipliers of periodic orbits in spaces of rational maps, Ergodic Theory Dynam. Systems 31 (2011), no. 1, 197–243. MR 2755929, DOI 10.1017/S0143385709001059
- Mikhail Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997), no. 2, 185–247, 247–297. MR 1459261, DOI 10.1007/BF02392694
- R. S. MacKay and C. Tresser, Boundary of topological chaos for bimodal maps of the interval, J. London Math. Soc. (2) 37 (1988), no. 1, 164–181. MR 921755, DOI 10.1112/jlms/s2-37.121.164
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- N. Metropolis, M. L. Stein, and P. R. Stein, On finite limit sets for transformations on the unit interval, J. Combinatorial Theory Ser. A 15 (1973), 25–44. MR 316636, DOI 10.1016/0097-3165(73)90033-2
- John Milnor, Remarks on iterated cubic maps, Experiment. Math. 1 (1992), no. 1, 5–24. MR 1181083
- John Milnor, Hyperbolic components, Conformal dynamics and hyperbolic geometry, Contemp. Math., vol. 573, Amer. Math. Soc., Providence, RI, 2012, pp. 183–232. With an appendix by A. Poirier. MR 2964079, DOI 10.1090/conm/573/11428
- John Milnor and William Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563. MR 970571, DOI 10.1007/BFb0082847
- John Milnor and Charles Tresser, On entropy and monotonicity for real cubic maps, Comm. Math. Phys. 209 (2000), no. 1, 123–178. With an appendix by Adrien Douady and Pierrette Sentenac. MR 1736945, DOI 10.1007/s002200050018
- MichałMisiurewicz, Continuity of entropy revisited, Dynamical systems and applications, World Sci. Ser. Appl. Anal., vol. 4, World Sci. Publ., River Edge, NJ, 1995, pp. 495–503. MR 1372979, DOI 10.1142/9789812796417_{0}031
- M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), no. 1, 45–63. MR 579440, DOI 10.4064/sm-67-1-45-63
- Helena E. Nusse and James A. Yorke, Period halving for $x_{n+1}=MF(x_n)$ where $F$ has negative Schwarzian derivative, Phys. Lett. A 127 (1988), no. 6-7, 328–334. MR 934486, DOI 10.1016/0375-9601(88)90579-8
- W. Parry, On the $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416 (English, with Russian summary). MR 142719, DOI 10.1007/BF02020954
- Anca Radulescu, The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst. 19 (2007), no. 1, 139–175. MR 2318278, DOI 10.3934/dcds.2007.19.139
- Lasse Rempe and Sebastian van Strien, Density of hyperbolicity for real transcendental entire functions with real singular values. http://arxiv.org/abs/1005.4627.
- Weixiao Shen, On the metric properties of multimodal interval maps and $C^2$ density of Axiom A, Invent. Math. 156 (2004), no. 2, 301–403. MR 2052610, DOI 10.1007/s00222-003-0343-2
- Sebastian van Strien, One-dimensional dynamics in the new millennium, Discrete Contin. Dyn. Syst. 27 (2010), no. 2, 557–588. MR 2600680, DOI 10.3934/dcds.2010.27.557
- Sebastian van Strien, One-parameter families of smooth interval maps: density of hyperbolicity and robust chaos, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4443–4446. MR 2680068, DOI 10.1090/S0002-9939-2010-10446-X
- Sebastian van Strien, Milnor’s Conjecture on Monotonicity of Topological Entropy: results and questions, Frontiers in Complex Dynamics: Celebrating John Milnor’s 80th Birthday\rq, Princeton University Press. Editor(s): Bonifant, Lyubich, Sutherland, pp. 673–687. ISBN:9780691159294.
- Masato Tsujii, A simple proof for monotonicity of entropy in the quadratic family, Ergodic Theory Dynam. Systems 20 (2000), no. 3, 925–933. MR 1764936, DOI 10.1017/S014338570000050X
- Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300. MR 889979, DOI 10.1007/BF02766215
- Saeed Zakeri, On critical points of proper holomorphic maps on the unit disk, Bull. London Math. Soc. 30 (1998), no. 1, 62–66. MR 1479037, DOI 10.1112/S0024609397003706
- Anna Zdunik, Entropy of transformations of the unit interval, Fund. Math. 124 (1984), no. 3, 235–241. MR 774514, DOI 10.4064/fm-124-3-235-241
Bibliographic Information
- Henk Bruin
- Affiliation: Faculty of Mathematics, University of Vienna, Oskar Morgenstern Platz 1, A-1090 Vienna, Austria
- MR Author ID: 329851
- Email: henk.bruin@univie.ac.at
- Sebastian van Strien
- Affiliation: Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- Email: s.van-strien@imperial.ac.uk
- Received by editor(s): May 20, 2009
- Received by editor(s) in revised form: June 12, 2010, September 13, 2012, and October 3, 2013
- Published electronically: June 23, 2014
- Additional Notes: The first author was supported by EPSRC [Grants GR/S91147/01 and EP/F037112/1].
The second author was supported by a Royal Society Leverhulme Trust Senior Research Fellowship, a Visitor’s Travel grant from the Netherlands Organisation for Scientific Research (NWO) and the Marie Curie grant MRTN-CT-2006-035651 (CODY) - © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 28 (2015), 1-61
- MSC (2010): Primary 37E05; Secondary 37B40
- DOI: https://doi.org/10.1090/S0894-0347-2014-00795-5
- MathSciNet review: 3264762