Brody curves and mean dimension
HTML articles powered by AMS MathViewer
- by Shinichiroh Matsuo and Masaki Tsukamoto;
- J. Amer. Math. Soc. 28 (2015), 159-182
- DOI: https://doi.org/10.1090/S0894-0347-2014-00798-0
- Published electronically: May 22, 2014
- PDF | Request permission
Abstract:
We study the mean dimensions of the systems of Brody curves. In particular we give the formula of the mean dimension of the system of Brody curves in the Riemann sphere. A key notion is a non-degeneracy of Brody curves introduced by Yosida (1934). We develop a deformation theory of non-degenerate Brody curves and apply it to the calculation of the mean dimension. Moreover we show that there are sufficiently many non-degenerate Brody curves by using the method of gluing infinitely many rational curves.References
- Sigurd Angenent, The shadowing lemma for elliptic PDE, Dynamics of infinite-dimensional systems (Lisbon, 1986) NATO Adv. Sci. Inst. Ser. F: Comput. Systems Sci., vol. 37, Springer, Berlin, 1987, pp. 7–22. MR 921893, DOI 10.1007/978-3-642-86458-2_{2}
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Second revised edition, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008. With a preface by David Ruelle; Edited by Jean-René Chazottes. MR 2423393, DOI 10.1007/978-3-540-77695-6
- Robert Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213–219. MR 470252, DOI 10.1090/S0002-9947-1978-0470252-3
- Alexandre Eremenko, Normal holomorphic curves from parabolic regions to projective spaces, available at arXiv:0710.1281.
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Antoine Gournay, Dimension moyenne et espaces d’applications pseudo-holomorphes, Département de Mathématiques d’Orsay, 2008.
- Antoine Gournay, On a Hölder covariant version of mean dimension, C. R. Math. Acad. Sci. Paris 347 (2009), no. 23-24, 1389–1392 (English, with English and French summaries). MR 2588787, DOI 10.1016/j.crma.2009.10.014
- Antoine Gournay, A dynamical approach to von Neumann dimension, Discrete Contin. Dyn. Syst. 26 (2010), no. 3, 967–987. MR 2600725, DOI 10.3934/dcds.2010.26.967
- A. Gournay, Complex surfaces and interpolation on pseudo-holomorphic cylinder, available at arXiv:1006.1775.
- Antoine Gournay, Widths of $\ell ^p$ balls, Houston J. Math. 37 (2011), no. 4, 1227–1248. MR 2875268
- Misha Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999), no. 4, 323–415. MR 1742309, DOI 10.1023/A:1009841100168
- Elon Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227–262 (2000). MR 1793417, DOI 10.1007/BF02698858
- Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24. MR 1749670, DOI 10.1007/BF02810577
- Marta Macrì, Margherita Nolasco, and Tonia Ricciardi, Asymptotics for selfdual vortices on the torus and on the plane: a gluing technique, SIAM J. Math. Anal. 37 (2005), no. 1, 1–16. MR 2176921, DOI 10.1137/040619843
- Shinichiroh Matsuo and Masaki Tsukamoto, Instanton approximation, periodic ASD connections, and mean dimension, J. Funct. Anal. 260 (2011), no. 5, 1369–1427. MR 2749431, DOI 10.1016/j.jfa.2010.11.008
- Dusa McDuff and Dietmar Salamon, $J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2004. MR 2045629, DOI 10.1090/coll/052
- Masaki Tsukamoto, Gluing an infinite number of instantons, Nagoya Math. J. 188 (2007), 107–131. MR 2371770, DOI 10.1017/S0027763000009466
- Masaki Tsukamoto, Moduli space of Brody curves, energy and mean dimension, Nagoya Math. J. 192 (2008), 27–58. MR 2477610, DOI 10.1017/S0027763000025964
- Masaki Tsukamoto, A packing problem for holomorphic curves, Nagoya Math. J. 194 (2009), 33–68. MR 2536526, DOI 10.1017/S0027763000009624
- Masaki Tsukamoto, Gauge theory on infinite connected sum and mean dimension, Math. Phys. Anal. Geom. 12 (2009), no. 4, 325–380. MR 2551659, DOI 10.1007/s11040-009-9065-z
- Masaki Tsukamoto, Deformation of Brody curves and mean dimension, Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1641–1657. MR 2545021, DOI 10.1017/S014338570800076X
- Masaki Tsukamoto, Remark on energy density of Brody curves, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 8, 127–131. MR 2989063, DOI 10.3792/pjaa.88.127
- K. Yosida, On a class of meromorphic functions, Proc. Phys.-Math. Soc. Japan 16 (1934), 227–235.
Bibliographic Information
- Shinichiroh Matsuo
- Affiliation: Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Email: matsuo@math.sci.osaka-u.ac.jp
- Masaki Tsukamoto
- Affiliation: Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
- MR Author ID: 828585
- Email: tukamoto@math.kyoto-u.ac.jp
- Received by editor(s): June 28, 2012
- Received by editor(s) in revised form: January 6, 2014
- Published electronically: May 22, 2014
- © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 28 (2015), 159-182
- MSC (2010): Primary 32H30, 54H20
- DOI: https://doi.org/10.1090/S0894-0347-2014-00798-0
- MathSciNet review: 3264765