Random groups contain surface subgroups
HTML articles powered by AMS MathViewer
- by Danny Calegari and Alden Walker;
- J. Amer. Math. Soc. 28 (2015), 383-419
- DOI: https://doi.org/10.1090/S0894-0347-2014-00802-X
- Published electronically: June 10, 2014
- PDF | Request permission
Abstract:
A random group contains many quasiconvex surface subgroups.References
- Agol I., The virtual Haken conjecture, available at arXiv:1204.2810. with an appendix with D. Groves and J. Manning.
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Danny Calegari and Alden Walker, Random rigidity in the free group, Geom. Topol. 17 (2013), no. 3, 1707–1744. MR 3073933, DOI 10.2140/gt.2013.17.1707
- Calegari D. and Walker A.. scallop, Computer program available from the authors’ webpages.
- Calegari D. and Walker A., Surface subgroups from linear programming, available at arXiv:1212.2618., DOI 10.1215/00127094-2877511
- Calegari D. and Wilton H., Random graphs of free groups contain surface subgroups, available at arXiv:1303.2700.
- François Dahmani, Vincent Guirardel, and Piotr Przytycki, Random groups do not split, Math. Ann. 349 (2011), no. 3, 657–673. MR 2755002, DOI 10.1007/s00208-010-0532-4
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- Gromov M., personal communication.
- Jeremy Kahn and Vladimir Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. (2) 175 (2012), no. 3, 1127–1190. MR 2912704, DOI 10.4007/annals.2012.175.3.4
- Marcin Kotowski and MichałKotowski, Random groups and property $(T)$: Żuk’s theorem revisited, J. Lond. Math. Soc. (2) 88 (2013), no. 2, 396–416. MR 3106728, DOI 10.1112/jlms/jdt024
- Liu Y. and Markovic V., Homology of curves and surfaces in closed hyperbolic 3-manifolds, available at arXiv:1309.7418., DOI 10.1215/00127094-3167744
- Yann Ollivier, Some small cancellation properties of random groups, Internat. J. Algebra Comput. 17 (2007), no. 1, 37–51. MR 2300404, DOI 10.1142/S021819670700338X
- Yann Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos [Mathematical Surveys], vol. 10, Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. MR 2205306
- Yann Ollivier and Daniel T. Wise, Cubulating random groups at density less than $1/6$, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4701–4733. MR 2806688, DOI 10.1090/S0002-9947-2011-05197-4
- John R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), no. 3, 551–565. MR 695906, DOI 10.1007/BF02095993
- A. Żuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal. 13 (2003), no. 3, 643–670. MR 1995802, DOI 10.1007/s00039-003-0425-8
Bibliographic Information
- Danny Calegari
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- MR Author ID: 605373
- Email: dannyc@math.uchicago.edu
- Alden Walker
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- MR Author ID: 925092
- Email: akwalker@math.uchicago.edu
- Received by editor(s): April 5, 2013
- Received by editor(s) in revised form: November 19, 2013, December 17, 2013, and January 27, 2014
- Published electronically: June 10, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 28 (2015), 383-419
- MSC (2010): Primary 20P05, 20F65, 57M07; Secondary 57M20
- DOI: https://doi.org/10.1090/S0894-0347-2014-00802-X
- MathSciNet review: 3300698