Solution to a non-Archimedean Monge-Ampère equation
HTML articles powered by AMS MathViewer
- by Sébastien Boucksom, Charles Favre and Mattias Jonsson;
- J. Amer. Math. Soc. 28 (2015), 617-667
- DOI: https://doi.org/10.1090/S0894-0347-2014-00806-7
- Published electronically: May 22, 2014
- PDF | Request permission
Abstract:
Let $X$ be a smooth projective Berkovich space over a complete discrete valuation field $K$ of residue characteristic zero, and assume that $X$ is defined over a function field admitting $K$ as a completion. Let further $\mu$ be a positive measure on $X$ and $L$ be an ample line bundle such that the mass of $\mu$ is equal to the degree of $L$. We prove the existence of a continuous semipositive metric whose associated measure is equal to $\mu$ in the sense of Zhang and Chambert-Loir. We do this under a technical assumption on the support of $\mu$, which is, for instance, fulfilled if the support is a finite set of divisorial points. Our method draws on analogs of the variational approach developed to solve complex Monge-Ampère equations on compact Kähler manifolds by Berman, Guedj, Zeriahi, and the first named author, and of Kołodziej’s $C^0$-estimates. It relies in a crucial way on the compactness properties of singular semipositive metrics, as defined and studied in a companion article.References
- Alexandrov A. D., On the theory of mixed volumes of convex bodies III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. (Russian), Mat. Sbornik 3 (1938), 27–44. English translation available in selected works. Part I. Selected scientific papers. Gordon and Breach, Amsterdam, 1996.
- Matthew Baker and Robert Rumely, Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, vol. 159, American Mathematical Society, Providence, RI, 2010. MR 2599526, DOI 10.1090/surv/159
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Vladimir G. Berkovich, Smooth $p$-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), no. 1, 1–84. MR 1702143, DOI 10.1007/s002220050323
- Robert Berman and Sébastien Boucksom, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math. 181 (2010), no. 2, 337–394. MR 2657428, DOI 10.1007/s00222-010-0248-9
- Robert J. Berman, Sébastien Boucksom, Vincent Guedj, and Ahmed Zeriahi, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179–245. MR 3090260, DOI 10.1007/s10240-012-0046-6
- Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI 10.1007/BF02392348
- Eric Bedford and B. A. Taylor, Fine topology, Šilov boundary, and $(dd^c)^n$, J. Funct. Anal. 72 (1987), no. 2, 225–251. MR 886812, DOI 10.1016/0022-1236(87)90087-5
- S. Bloch, H. Gillet, and C. Soulé, Non-Archimedean Arakelov theory, J. Algebraic Geom. 4 (1995), no. 3, 427–485. MR 1325788
- Zbigniew Błocki, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 6, 1697–1701. MR 2021054, DOI 10.1512/iumj.2003.52.2346
- Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. MR 2299485, DOI 10.1090/S0002-9939-07-08858-2
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. MR 3019449, DOI 10.1090/S1056-3911-2012-00574-8
- Sébastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), no. 2, 199–262. MR 2746347, DOI 10.1007/s11511-010-0054-7
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 449–494. MR 2426355, DOI 10.2977/prims/1210167334
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom. 18 (2009), no. 2, 279–308. MR 2475816, DOI 10.1090/S1056-3911-08-00490-6
- Burgos J. I., Philippon P., and Sombra M., Arithmetic geometry of toric varieties. Metrics, measures, and heights, available at arXiv:1105.5584. To appear in Astérisque, 212 pages.
- Urban Cegrell, Pluricomplex energy, Acta Math. 180 (1998), no. 2, 187–217. MR 1638768, DOI 10.1007/BF02392899
- Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215–235 (French). MR 2244803, DOI 10.1515/CRELLE.2006.049
- Antoine Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II, London Math. Soc. Lecture Note Ser., vol. 384, Cambridge Univ. Press, Cambridge, 2011, pp. 1–50. MR 2885340
- Chambert-Loir A. and Ducros A., Formes différentielles réelles et courants sur les espaces de Berkovich, available at arXiv:1204.6277.
- Jean-Pierre Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361–409. MR 1158622
- Sławomir Dinew, Uniqueness in $\scr E(X,\omega )$, J. Funct. Anal. 256 (2009), no. 7, 2113–2122. MR 2498760, DOI 10.1016/j.jfa.2009.01.019
- Grothendieck A., Éléments de géométrie algébrique, Publ. Math. IHES.
- Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639. MR 2505296, DOI 10.1090/S0894-0347-09-00629-8
- Charles Favre and Mattias Jonsson, The valuative tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004. MR 2097722, DOI 10.1007/b100262
- Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Walter Gubler, Equidistribution over function fields, Manuscripta Math. 127 (2008), no. 4, 485–510. MR 2457191, DOI 10.1007/s00229-008-0198-3
- Walter Gubler, A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry, Contemp. Math., vol. 589, Amer. Math. Soc., Providence, RI, 2013, pp. 125–189. MR 3088913, DOI 10.1090/conm/589/11745
- Gubler W., Forms and currents on the analytification of an algebraic variety (after Chambert-Loir and Ducros). arXiv:1303.7364., DOI 10.1007/978-3-319-30945-3_{1}
- Vincent Guedj and Ahmed Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), no. 4, 607–639. MR 2203165, DOI 10.1007/BF02922247
- Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442–482. MR 2352488, DOI 10.1016/j.jfa.2007.04.018
- Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145–2209 (2013) (English, with English and French summaries). MR 3060755, DOI 10.5802/aif.2746
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 335518, DOI 10.1007/BFb0070318
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. MR 1618325, DOI 10.1007/BF02392879
- Sławomir Kołodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 3, 667–686. MR 1986892, DOI 10.1512/iumj.2003.52.2220
- Kontsevich M. and Tschinkel Y., Non-Archimedean Kähler geometry. Unpublished.
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Yifeng Liu, A non-Archimedean analogue of the Calabi-Yau theorem for totally degenerate abelian varieties, J. Differential Geom. 89 (2011), no. 1, 87–110. MR 2863913
- T. Matsusaka, The criteria for algebraic equivalence and the torsion group, Amer. J. Math. 79 (1957), 53–66. MR 82730, DOI 10.2307/2372383
- Davesh Maulik and Bjorn Poonen, Néron-Severi groups under specialization, Duke Math. J. 161 (2012), no. 11, 2167–2206. MR 2957700, DOI 10.1215/00127094-1699490
- Mustaţǎ M. and Nicaise J., Weight functions on non-archimedean analytic spaces and the Kontsevich-Soibelman skeleton, available at arXiv:1212.6328., DOI 10.14231/AG-2015-016
- Nicaise J. and Xu C., The essential skeleton of a degeneration of algebraic varieties, available at arXiv:1307.4041., DOI 10.1353/ajm.2016.0049
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- Jeffrey Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), no. 2, 345–364. MR 454331, DOI 10.1216/RMJ-1977-7-2-345
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 354618
- Thuillier A., Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov.. Ph.D. Thesis (2005), Université de Rennes I, available at http://tel.archives-ouvertes.fr/docs/00/04/87/50/PDF/tel-00010990.pdf.
- Gang Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld. MR 1787650, DOI 10.1007/978-3-0348-8389-4
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
- Yuan X. and Zhang S.-W., The arithmetic Hodge Theorem for adelic line bundles I, available at arXiv:1304.3538., DOI 10.1007/s00208-016-1414-1
- Yuan X. and Zhang S.-W., The arithmetic Hodge Theorem for adelic line bundles II, available at arXiv:1304.3539.
- Shouwu Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), no. 1, 187–221. MR 1254133, DOI 10.1090/S0894-0347-1995-1254133-7
Bibliographic Information
- Sébastien Boucksom
- Affiliation: CNRS–Université Pierre et Marie Curie, Institut de Mathématiques, F-75251 Paris Cedex 05, France
- MR Author ID: 688226
- Email: boucksom@math.jussieu.fr
- Charles Favre
- Affiliation: CNRS–CMLS, École Polytechnique, F-91128 Palaiseau Cedex, France
- MR Author ID: 641179
- Email: favre@math.polytechnique.fr
- Mattias Jonsson
- Affiliation: Dept of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043
- MR Author ID: 631360
- Email: mattiasj@umich.edu
- Received by editor(s): December 30, 2011
- Received by editor(s) in revised form: March 20, 2014
- Published electronically: May 22, 2014
- Additional Notes: The first author was partially supported by the ANR projects MACK and POSITIVE.
The second author was supported by the ANR-grant BERKO, and by the ERC-starting grant project “Nonarcomp” no.307856.
The third author was partially supported by the CNRS and the NSF - © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 28 (2015), 617-667
- MSC (2010): Primary 32P05; Secondary 32U05
- DOI: https://doi.org/10.1090/S0894-0347-2014-00806-7
- MathSciNet review: 3327532