On the three dimensional minimal model program in positive characteristic
HTML articles powered by AMS MathViewer
- by Christopher D. Hacon and Chenyang Xu;
- J. Amer. Math. Soc. 28 (2015), 711-744
- DOI: https://doi.org/10.1090/S0894-0347-2014-00809-2
- Published electronically: June 4, 2014
- PDF | Request permission
Abstract:
Let $f:(X,B)\to Z$ be a threefold extremal dlt flipping contraction defined over an algebraically closed field of characteristic $p>5$, such that the coefficients of $\{ B\}$ are in the standard set $\{ 1-\frac 1n|n\in \mathbb N\}$, then the flip of $f$ exists. As a consequence, we prove the existence of minimal models for any projective ${\mathbb Q}$-factorial terminal variety $X$ with pseudo-effective canonical divisor $K_X$.References
- S. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1617523, DOI 10.1007/978-3-662-03580-1
- Caucher Birkar, Paolo Cascini, Christopher Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468., DOI 10.1090/S0894-0347-09-00649-3
- Vincent Cossart and Olivier Piltant, Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra 320 (2008), no. 3, 1051–1082. MR 2427629, DOI 10.1016/j.jalgebra.2008.03.032
- Vincent Cossart and Olivier Piltant, Resolution of singularities of threefolds in positive characteristic. II, J. Algebra 321 (2009), no. 7, 1836–1976. MR 2494751, DOI 10.1016/j.jalgebra.2008.11.030
- Alessio Corti, 3-fold flips after Shokurov, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 18–48. MR 2359340, DOI 10.1093/acprof:oso/9780198570615.003.0002
- Steven Dale Cutkosky, Resolution of singularities, Graduate Studies in Mathematics, vol. 63, American Mathematical Society, Providence, RI, 2004. MR 2058431, DOI 10.1090/gsm/063
- Osamu Fujino, Special termination and reduction to pl flips, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 63–75. MR 2359342, DOI 10.1093/acprof:oso/9780198570615.003.0004
- Osamu Fujino, Karl Schwede, and Shunsuke Takagi, Supplements to non-lc ideal sheaves, Higher dimensional algebraic geometry, RIMS Kôkyûroku Bessatsu, B24, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 1–46. MR 2809647
- Nobuo Hara, Classification of two-dimensional $F$-regular and $F$-pure singularities, Adv. Math. 133 (1998), no. 1, 33–53. MR 1492785, DOI 10.1006/aima.1997.1682
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Jen-Chieh Hsiao, Karl Schwede, and Wenliang Zhang, Cartier modules on toric varieties, Trans. Amer. Math. Soc. 366 (2014), no. 4, 1773–1795. MR 3152712, DOI 10.1090/S0002-9947-2013-05856-4
- Yujiro Kawamata, Semistable minimal models of threefolds in positive or mixed characteristic, J. Algebraic Geom. 3 (1994), no. 3, 463–491. MR 1269717
- Seán Keel, Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2) 149 (1999), no. 1, 253–286. MR 1680559, DOI 10.2307/121025
- Dennis S. Keeler, Ample filters of invertible sheaves, J. Algebra 259 (2003), no. 1, 243–283. MR 1953719, DOI 10.1016/S0021-8693(02)00557-4
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- K. Kollár and S. Kovács, Birational geometry of log surfaces, available at https://web.math.princeton.edu/~kollar/.
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Shigefumi Mori, Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. MR 927961, DOI 10.1090/pspum/046.1/927961
- V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40. MR 799251, DOI 10.2307/1971368
- Mircea Mustaţă and Karl Schwede, A Frobenius variant of Seshadri constants, Math. Ann. 358 (2014), no. 3-4, 861–878. MR 3175143, DOI 10.1007/s00208-013-0976-4
- Z. Patakfalvi, Semi-positivity in positive characteristics, Annales scientifiques de l’École Normale Supérieure. to appear.
- Yuri G. Prokhorov, Lectures on complements on log surfaces, MSJ Memoirs, vol. 10, Mathematical Society of Japan, Tokyo, 2001. MR 1830440
- Karl Schwede, $F$-adjunction, Algebra Number Theory 3 (2009), no. 8, 907–950. MR 2587408, DOI 10.2140/ant.2009.3.907
- Karl Schwede, Centers of $F$-purity, Math. Z. 265 (2010), no. 3, 687–714. MR 2644316, DOI 10.1007/s00209-009-0536-5
- K. Schwede, A canonical linear system associated to adjoint divisors in characteristic $p>0$, Journal für die reine und angewandte Mathematik. to appear.
- K. Schwede. Personal communication, 2013.
- Karl Schwede and Karen E. Smith, Globally $F$-regular and log Fano varieties, Adv. Math. 224 (2010), no. 3, 863–894. MR 2628797, DOI 10.1016/j.aim.2009.12.020
- K. Schwede and K. Tucker, On the behavior of test ideals under finite morphisms, J. Algebraic Geom. 23 (2014), 399–443., DOI 10.1090/S1056-3911-2013-00610-4
- Karl Schwede and Kevin Tucker, A survey of test ideals, Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 39–99. MR 2932591
- V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203 (Russian); English transl., Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95–202. MR 1162635, DOI 10.1070/IM1993v040n01ABEH001862
- V. V. Shokurov, Complements on surfaces, J. Math. Sci. (New York) 102 (2000), no. 2, 3876–3932. Algebraic geometry, 10. MR 1794169, DOI 10.1007/BF02984106
- H. Tanaka, Minimal models and abundance for positive characteristic log surfaces, Nagoya Math. J., available at arXiv:1201.5699.
- H. Tanaka, X-method for klt surfaces in positive characteristic, J. Algebraic Geom., available at arXiv:1202.2497.
- Keiichi Watanabe, $F$-regular and $F$-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), no. 2-3, 341–350. MR 1117644, DOI 10.1016/0022-4049(91)90157-W
Bibliographic Information
- Christopher D. Hacon
- Affiliation: Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 48112-0090
- MR Author ID: 613883
- Email: hacon@math.utah.edu
- Chenyang Xu
- Affiliation: Beijing International Center of Mathematics Research, 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
- Email: cyxu@math.pku.edu.cn
- Received by editor(s): February 23, 2013
- Received by editor(s) in revised form: November 22, 2013, February 12, 2014, and March 27, 2014
- Published electronically: June 4, 2014
- © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 28 (2015), 711-744
- MSC (2010): Primary 14E30; Secondary 14E05, 14J30, 13A35
- DOI: https://doi.org/10.1090/S0894-0347-2014-00809-2
- MathSciNet review: 3327534