Independent sets in hypergraphs
HTML articles powered by AMS MathViewer
- by József Balogh, Robert Morris and Wojciech Samotij;
- J. Amer. Math. Soc. 28 (2015), 669-709
- DOI: https://doi.org/10.1090/S0894-0347-2014-00816-X
- Published electronically: August 7, 2014
- PDF | Request permission
Abstract:
Many important theorems and conjectures in combinatorics, such as the theorem of Szemerédi on arithmetic progressions and the Erdős–Stone Theorem in extremal graph theory, can be phrased as statements about families of independent sets in certain uniform hypergraphs. In recent years, an important trend in the area has been to extend such classical results to the so-called ‘sparse random setting’. This line of research has recently culminated in the breakthroughs of Conlon and Gowers and of Schacht, who developed general tools for solving problems of this type. Although these two articles solved very similar sets of longstanding open problems, the methods used are very different from one another and have different strengths and weaknesses.
In this article, we provide a third, completely different, approach to proving extremal and structural results in sparse random sets that also yields their natural ‘counting’ counterparts. We give a structural characterization of the independent sets in a large class of uniform hypergraphs by showing that every independent set is almost contained in one of a small number of relatively sparse sets. We then derive many interesting results as fairly straightforward consequences of this abstract theorem. In particular, we prove the well-known conjecture of Kohayakawa, Łuczak, and Rödl, a probabilistic embedding lemma for sparse graphs. We also give alternative proofs of many of the results of Conlon and Gowers and of Schacht, such as sparse random versions of Szemerédi’s theorem, the Erdős–Stone Theorem, and the Erdős–Simonovits Stability Theorem, and obtain their natural ‘counting’ versions, which in some cases are considerably stronger. For example, we show that for each positive $\beta$ and integer $k$, there are at most $\binom {\beta n}{m}$ sets of size $m$ that contain no $k$-term arithmetic progression, provided that $m \geqslant Cn^{1-1/(k-1)}$, where $C$ is a constant depending only on $\beta$ and $k$. We also obtain new results, such as a sparse version of the Erdős–Frankl–Rödl Theorem on the number of $H$-free graphs and, as a consequence of the KŁR conjecture, we extend a result of Rödl and Ruciński on Ramsey properties in sparse random graphs to the general, non-symmetric setting.
References
- Alon N., Balogh J., Morris R., and Samotij W., Counting sum-free sets in Abelian groups, Israel J. Math., 199 (2014), 309–344., DOI 10.1007/s11856-013-0067-y
- Noga Alon, József Balogh, Robert Morris, and Wojciech Samotij, A refinement of the Cameron-Erdős conjecture, Proc. Lond. Math. Soc. (3) 108 (2014), no. 1, 44–72. MR 3162820, DOI 10.1112/plms/pdt033
- Noga Alon and Joel H. Spencer, The probabilistic method, 3rd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2008. With an appendix on the life and work of Paul Erdős. MR 2437651, DOI 10.1002/9780470277331
- László Babai, Miklós Simonovits, and Joel Spencer, Extremal subgraphs of random graphs, J. Graph Theory 14 (1990), no. 5, 599–622. MR 1073101, DOI 10.1002/jgt.3190140511
- József Balogh, Béla Bollobás, and Miklós Simonovits, The number of graphs without forbidden subgraphs, J. Combin. Theory Ser. B 91 (2004), no. 1, 1–24. MR 2047528, DOI 10.1016/j.jctb.2003.08.001
- József Balogh, Béla Bollobás, and Miklós Simonovits, The typical structure of graphs without given excluded subgraphs, Random Structures Algorithms 34 (2009), no. 3, 305–318. MR 2504400, DOI 10.1002/rsa.20242
- Balogh J., Morris R., Samotij W., and Warnke L., The typical structure of sparse $K_{r+1}$-free graphs. submitted.
- József Balogh and Dhruv Mubayi, Almost all triple systems with independent neighborhoods are semi-bipartite, J. Combin. Theory Ser. A 118 (2011), no. 4, 1494–1518. MR 2771596, DOI 10.1016/j.jcta.2011.01.006
- József Balogh and Dhruv Mubayi, Almost all triangle-free triple systems are tripartite, Combinatorica 32 (2012), no. 2, 143–169. MR 2927636, DOI 10.1007/s00493-012-2657-4
- József Balogh and Wojciech Samotij, The number of $K_{m,m}$-free graphs, Combinatorica 31 (2011), no. 2, 131–150. MR 2848247, DOI 10.1007/s00493-011-2610-y
- József Balogh and Wojciech Samotij, The number of $K_{s,t}$-free graphs, J. Lond. Math. Soc. (2) 83 (2011), no. 2, 368–388. MR 2776642, DOI 10.1112/jlms/jdq086
- Behrisch M., Random graphs without a short cycle (2002). Master’s thesis, Humboldt-Universität zu Berlin.
- V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), no. 3, 725–753. MR 1325795, DOI 10.1090/S0894-0347-96-00194-4
- Conlon D. and Gowers W.T., Combinatorial theorems in sparse random sets. submitted., DOI 10.4007/annals.2016.184.2.2
- Conlon D., Gowers W.T., Samotij W., and Schacht M., On the KŁR conjecture in random graphs. To appear in Israel J. Math., DOI 10.1007/s11856-014-1120-1
- P. Erdős, Some recent results on extremal problems in graph theory. Results, Theory of Graphs (Internat. Sympos., Rome, 1966) Gordon & Breach, New York, 1967, pp. 117–123 (English); pp. 124–130 (French). MR 227049
- P. Erdős, P. Frankl, and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986), no. 2, 113–121. MR 932119, DOI 10.1007/BF01788085
- P. Erdős, D. J. Kleitman, and B. L. Rothschild, Asymptotic enumeration of $K_{n}$-free graphs, Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973) Accad. Naz. Lincei, Rome, 1976, pp. 19–27 (English, with Italian summary). MR 463020
- Paul Erdős and Miklós Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), no. 2, 181–192. MR 726456, DOI 10.1007/BF02579292
- P. Erdös and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091. MR 18807, DOI 10.1090/S0002-9904-1946-08715-7
- Jacob Fox, A new proof of the graph removal lemma, Ann. of Math. (2) 174 (2011), no. 1, 561–579. MR 2811609, DOI 10.4007/annals.2011.174.1.17
- P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without $K_4$, Graphs Combin. 2 (1986), no. 2, 135–144. MR 932121, DOI 10.1007/BF01788087
- Ehud Friedgut, Vojtěch Rödl, and Mathias Schacht, Ramsey properties of random discrete structures, Random Structures Algorithms 37 (2010), no. 4, 407–436. MR 2760356, DOI 10.1002/rsa.20352
- Zoltán Füredi, Random Ramsey graphs for the four-cycle, Discrete Math. 126 (1994), no. 1-3, 407–410. MR 1264510, DOI 10.1016/0012-365X(94)90287-9
- Zoltán Füredi, Oleg Pikhurko, and Miklós Simonovits, On triple systems with independent neighbourhoods, Combin. Probab. Comput. 14 (2005), no. 5-6, 795–813. MR 2174657, DOI 10.1017/S0963548305006905
- Zoltán Füredi and Miklós Simonovits, Triple systems not containing a Fano configuration, Combin. Probab. Comput. 14 (2005), no. 4, 467–484. MR 2160414, DOI 10.1017/S0963548305006784
- H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291 (1979). MR 531279, DOI 10.1007/BF02790016
- Gerke S., Random graphs with constraints (2005).
- Stefanie Gerke, Yoshiharu Kohayakawa, Vojtěch Rödl, and Angelika Steger, Small subsets inherit sparse $\epsilon$-regularity, J. Combin. Theory Ser. B 97 (2007), no. 1, 34–56. MR 2278123, DOI 10.1016/j.jctb.2006.03.004
- S. Gerke, H. J. Prömel, T. Schickinger, A. Steger, and A. Taraz, $K_4$-free subgraphs of random graphs revisited, Combinatorica 27 (2007), no. 3, 329–365. MR 2345813, DOI 10.1007/s00493-007-2010-5
- S. Gerke, T. Schickinger, and A. Steger, $K_5$-free subgraphs of random graphs, Random Structures Algorithms 24 (2004), no. 2, 194–232. MR 2035876, DOI 10.1002/rsa.20000
- Stefanie Gerke and Angelika Steger, The sparse regularity lemma and its applications, Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 227–258. MR 2187740, DOI 10.1017/CBO9780511734885.010
- W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. of Math. (2) 166 (2007), no. 3, 897–946. MR 2373376, DOI 10.4007/annals.2007.166.897
- P. E. Haxell, Y. Kohayakawa, and T. Łuczak, Turán’s extremal problem in random graphs: forbidding even cycles, J. Combin. Theory Ser. B 64 (1995), no. 2, 273–287. MR 1339852, DOI 10.1006/jctb.1995.1035
- P. E. Haxell, Y. Kohayakawa, and T. Łuczak, Turán’s extremal problem in random graphs: forbidding odd cycles, Combinatorica 16 (1996), no. 1, 107–122. MR 1394514, DOI 10.1007/BF01300129
- Peter Keevash and Dhruv Mubayi, Stability theorems for cancellative hypergraphs, J. Combin. Theory Ser. B 92 (2004), no. 1, 163–175. MR 2078500, DOI 10.1016/j.jctb.2004.05.003
- Peter Keevash and Benny Sudakov, The Turán number of the Fano plane, Combinatorica 25 (2005), no. 5, 561–574. MR 2176425, DOI 10.1007/s00493-005-0034-2
- Daniel J. Kleitman and Kenneth J. Winston, On the number of graphs without $4$-cycles, Discrete Math. 41 (1982), no. 2, 167–172. MR 676877, DOI 10.1016/0012-365X(82)90204-7
- Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs, Foundations of computational mathematics (Rio de Janeiro, 1997) Springer, Berlin, 1997, pp. 216–230. MR 1661982
- Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey properties involving cycles, Random Structures Algorithms 11 (1997), no. 3, 245–276. MR 1609513, DOI 10.1002/(SICI)1098-2418(199710)11:3<245::AID-RSA3>3.3.CO;2-I
- Yoshiharu Kohayakawa, Tomasz Łuczak, and Vojtěch Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arith. 75 (1996), no. 2, 133–163. MR 1379396, DOI 10.4064/aa-75-2-133-163
- Y. Kohayakawa, T. Łuczak, and V. Rödl, On $K^4$-free subgraphs of random graphs, Combinatorica 17 (1997), no. 2, 173–213. MR 1479298, DOI 10.1007/BF01200906
- Y. Kohayakawa and V. Rödl, Regular pairs in sparse random graphs. I, Random Structures Algorithms 22 (2003), no. 4, 359–434. MR 1980964, DOI 10.1002/rsa.10081
- Yoshiharu Kohayakawa, Vojtěch Rödl, and Mathias Schacht, The Turán theorem for random graphs, Combin. Probab. Comput. 13 (2004), no. 1, 61–91. MR 2034303, DOI 10.1017/S0963548303005856
- Yoshiharu Kohayakawa, Mathias Schacht, and Reto Spöhel, Upper bounds on probability thresholds for asymmetric Ramsey properties, Random Structures Algorithms 44 (2014), no. 1, 1–28. MR 3143588, DOI 10.1002/rsa.20446
- Tomasz Łuczak, On triangle-free random graphs, Random Structures Algorithms 16 (2000), no. 3, 260–276. MR 1749289, DOI 10.1002/(SICI)1098-2418(200005)16:3<260::AID-RSA3>3.3.CO;2-H
- Martin Marciniszyn, Jozef Skokan, Reto Spöhel, and Angelika Steger, Asymmetric Ramsey properties of random graphs involving cliques, Random Structures Algorithms 34 (2009), no. 4, 419–453. MR 2531778, DOI 10.1002/rsa.20239
- Brendan Nagle, Vojtěch Rödl, and Mathias Schacht, Extremal hypergraph problems and the regularity method, Topics in discrete mathematics, Algorithms Combin., vol. 26, Springer, Berlin, 2006, pp. 247–278. MR 2249275, DOI 10.1007/3-540-33700-8_{1}6
- Deryk Osthus, Hans Jürgen Prömel, and Anusch Taraz, For which densities are random triangle-free graphs almost surely bipartite?, Combinatorica 23 (2003), no. 1, 105–150. Paul Erdős and his mathematics (Budapest, 1999). MR 1996629, DOI 10.1007/s00493-003-0016-1
- Yury Person and Mathias Schacht, Almost all hypergraphs without Fano planes are bipartite, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2009, pp. 217–226. MR 2809321
- F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. (2) 30 (1929), no. 4, 264–286. MR 1576401, DOI 10.1112/plms/s2-30.1.264
- Rödl V. and Ruciński A., Lower bounds on probability thresholds for Ramsey properties, Combinatorics, Paul Erdős is Eighty, Bolyai Soc. Math. Stud., János Bolyai Math. Soc. 1 (1993), 317–346.
- Vojtěch Rödl and Andrzej Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), no. 4, 917–942. MR 1276825, DOI 10.1090/S0894-0347-1995-1276825-6
- Vojtěch Rödl and Jozef Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms 28 (2006), no. 2, 180–194. MR 2198496, DOI 10.1002/rsa.20108
- I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976) Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 939–945. MR 519318
- Samotij W., Stability results for random discrete structures. To appear in Random Struct. Algorithms., DOI 10.1002/rsa.20477
- Saxton D. and Thomason A., Hypergraph containers. submitted., DOI 10.1007/s00222-014-0562-8
- Schacht M., Extremal results for random discrete structures. submitted., DOI 10.4007/annals.2016.184.2.1
- Alexander Scott, Szemerédi’s regularity lemma for matrices and sparse graphs, Combin. Probab. Comput. 20 (2011), no. 3, 455–466. MR 2784637, DOI 10.1017/S0963548310000490
- M. Simonovits, A method for solving extremal problems in graph theory, stability problems, Theory of Graphs (Proc. Colloq., Tihany, 1966) Academic Press, New York-London, 1968, pp. 279–319. MR 233735
- Tibor Szabó and Van H. Vu, Turán’s theorem in sparse random graphs, Random Structures Algorithms 23 (2003), no. 3, 225–234. MR 1999036, DOI 10.1002/rsa.10088
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, DOI 10.4064/aa-27-1-199-245
- Endre Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976) Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401 (English, with French summary). MR 540024
- Paul Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452 (Hungarian, with German summary). MR 18405
- P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959), 358–360. MR 106865, DOI 10.1112/jlms/s1-34.3.358
Bibliographic Information
- József Balogh
- Affiliation: Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801
- Email: jobal@math.uiuc.edu
- Robert Morris
- Affiliation: IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, RJ, Brasil
- MR Author ID: 777846
- Email: rob@impa.br
- Wojciech Samotij
- Affiliation: School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Trinity College, Cambridge CB2 1TQ, UK
- MR Author ID: 871997
- Email: ws299@cam.ac.uk
- Received by editor(s): June 16, 2012
- Received by editor(s) in revised form: March 21, 2014
- Published electronically: August 7, 2014
- Additional Notes: The first author was supported in part by NSF Career Grant DMS-0745185, UIUC Campus Research Board Grant 11067, and OTKA Grant K76099.
The second author was supported in part by CNPq bolsa de Produtivdade em Pesquisa.
The third author was supported in part by ERC Advanced Grant DMMCA and a Trinity College JRF - © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 28 (2015), 669-709
- MSC (2010): Primary 05D40; Secondary 05C30, 05C35, 05C65
- DOI: https://doi.org/10.1090/S0894-0347-2014-00816-X
- MathSciNet review: 3327533