The circle method and bounds for $L$-functions—III: $t$-aspect subconvexity for $GL(3)$ $L$-functions
HTML articles powered by AMS MathViewer
- by Ritabrata Munshi;
- J. Amer. Math. Soc. 28 (2015), 913-938
- DOI: https://doi.org/10.1090/jams/843
- Published electronically: July 13, 2015
- PDF | Request permission
Abstract:
Let $\pi$ be a Hecke-Maass cusp form for $SL(3,\mathbb {Z})$. In this paper we will prove the following subconvex bound: \[ L\left (\tfrac {1}{2}+it,\pi \right )\ll _{\pi ,\varepsilon } (1+|t|)^{\frac {3}{4}-\frac {1}{16}+\varepsilon }. \]References
- Valentin Blomer, Subconvexity for twisted $L$-functions on $\textrm {GL}(3)$, Amer. J. Math. 134 (2012), no. 5, 1385–1421. MR 2975240, DOI 10.1353/ajm.2012.0032
- Dorian Goldfeld, Automorphic forms and $L$-functions for the group $\textrm {GL}(n,\mathbf R)$, Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR 2254662, DOI 10.1017/CBO9780511542923
- Anton Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), no. 2, 278–295 (1983). MR 696884, DOI 10.1112/S0025579300012377
- M. N. Huxley, On stationary phase integrals, Glasgow Math. J. 36 (1994), no. 3, 355–362. MR 1295511, DOI 10.1017/S0017089500030962
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Hervé Jacquet and Joseph Shalika, Rankin-Selberg convolutions: Archimedean theory, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 125–207. MR 1159102
- Xiaoqing Li, Bounds for $\textrm {GL}(3)\times \textrm {GL}(2)$ $L$-functions and $\textrm {GL}(3)$ $L$-functions, Ann. of Math. (2) 173 (2011), no. 1, 301–336. MR 2753605, DOI 10.4007/annals.2011.173.1.8
- Stephen D. Miller and Wilfried Schmid, Automorphic distributions, $L$-functions, and Voronoi summation for $\textrm {GL}(3)$, Ann. of Math. (2) 164 (2006), no. 2, 423–488. MR 2247965, DOI 10.4007/annals.2006.164.423
- Ritabrata Munshi, Bounds for twisted symmetric square $L$-functions, J. Reine Angew. Math. 682 (2013), 65–88. MR 3181499, DOI 10.1515/crelle.2012.029
- R. Munshi, Bounds for twisted symmetric square $L$-functions—II. Unpublished.
- Ritabrata Munshi, Bounds for twisted symmetric square $L$-functions—III, Adv. Math. 235 (2013), 74–91. MR 3010051, DOI 10.1016/j.aim.2012.11.010
- Ritabrata Munshi, The circle method and bounds for $L$-functions—I, Math. Ann. 358 (2014), no. 1-2, 389–401. MR 3158002, DOI 10.1007/s00208-013-0968-4
- Ritabrata Munshi, The circle method and bounds for $L$-functions—II: Subconvexity for twists of $GL(3)$ $L$-functions, Amer. J. Math. 137 (2015), no. 3, 791–812., DOI 10.1353/ajm.2015.0018
- B. R. Srinivasan, The lattice point problem of many dimensional hyperboloids. III, Math. Ann. 160 (1965), 280–311. MR 181614, DOI 10.1007/BF01371611
- H. Weyl, Zur Abschätzung von $\zeta (1+ti)$, Math. Z. 10 (1921), 88–101., DOI 10.1007/BF02102307
Bibliographic Information
- Ritabrata Munshi
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, 1 Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
- MR Author ID: 817043
- Email: rmunshi@math.tifr.res.in
- Received by editor(s): March 31, 2014
- Published electronically: July 13, 2015
- © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 28 (2015), 913-938
- MSC (2010): Primary 11F66, 11M41; Secondary 11F55
- DOI: https://doi.org/10.1090/jams/843
- MathSciNet review: 3369905