Bertini irreducibility theorems over finite fields
HTML articles powered by AMS MathViewer
- by François Charles and Bjorn Poonen;
- J. Amer. Math. Soc. 29 (2016), 81-94
- DOI: https://doi.org/10.1090/S0894-0347-2014-00820-1
- Published electronically: October 31, 2014
- PDF | Request permission
Erratum: J. Amer. Math. Soc. 32 (2019), 605-607.
Abstract:
Given a geometrically irreducible subscheme $X \subseteq \mathbb {P}^n_{\mathbb {F}_q}$ of dimension at least $2$, we prove that the fraction of degree $d$ hypersurfaces $H$ such that $H \cap X$ is geometrically irreducible tends to $1$ as $d \to \infty$. We also prove variants in which $X$ is over an extension of $\mathbb {F}_q$, and in which the immersion $X \to \mathbb {P}^n_{\mathbb {F}_q}$ is replaced by a more general morphism.References
- Lior Bary-Soroker, 2013-09-16. Letter to Bjorn Poonen, available athttp://www.math.tau.ac.il/~barylior/files/let_poonen.pdf.
- Olivier Benoist, Le théorème de Bertini en famille, Bull. Soc. Math. France 139 (2011), no. 4, 555–569 (French, with English and French summaries). MR 2869305, DOI 10.24033/bsmf.2619
- Brian Conrad, Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), no. 3, 205–257. MR 2356346
- Alexander Duncan and Zinovy Reichstein, Pseudo-reflection groups and essential dimension, 2014-02-28. Preprint, arXiv:1307.5724v2.
- Jean-Pierre Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983 (French). MR 725671
- Serge Lang, Sur les séries $L$ d’une variété algébrique, Bull. Soc. Math. France 84 (1956), 385–407 (French). MR 88777, DOI 10.24033/bsmf.1477
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Oxford University Press, London, 1970. MR 282985
- Konrad Neumann, Every finitely generated regular field extension has a stable transcendence base, Israel J. Math. 104 (1998), 221–260. MR 1622303, DOI 10.1007/BF02897065
- Ivan Panin, On Grothendieck-Serre conjecture concerning principal G-bundles over regular semi-local domains containing a finite field: I, 2014-06-02. Preprint, arXiv:1406.0241v1.
- Ivan Panin, On Grothendieck-Serre conjecture concerning principal G-bundles over regular semi-local domains containing a finite field: II, 2014-06-02. Preprint, arXiv:1406.1129v1.
- Ivan Panin, Proof of Grothendieck-Serre conjecture on principal G-bundles over regular local rings containing a finite field, 2014-06-02. Preprint, arXiv:1406.0247v1.
- Bjorn Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099–1127. MR 2144974, DOI 10.4007/annals.2004.160.1099
- Bjorn Poonen, Smooth hypersurface sections containing a given subscheme over a finite field, Math. Res. Lett. 15 (2008), no. 2, 265–271. MR 2385639, DOI 10.4310/MRL.2008.v15.n2.a5
Bibliographic Information
- François Charles
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307; and CNRS, Laboratoire de Mathématiques d’Orsay,Université Paris-Sud, 91405 Orsay CEDEX, France
- Email: francois.charles@math.u-psud.fr
- Bjorn Poonen
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
- MR Author ID: 250625
- ORCID: 0000-0002-8593-2792
- Email: poonen@math.mit.edu
- Received by editor(s): November 27, 2013
- Received by editor(s) in revised form: July 4, 2014, July 7, 2014, and September 15, 2014
- Published electronically: October 31, 2014
- Additional Notes: This material is based upon work supported by the National Science Foundation under grant number DMS-1069236. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
- © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 81-94
- MSC (2010): Primary 14J70; Secondary 14N05
- DOI: https://doi.org/10.1090/S0894-0347-2014-00820-1
- MathSciNet review: 3402695