Growth in finite simple groups of Lie type
HTML articles powered by AMS MathViewer
- by László Pyber and Endre Szabó
- J. Amer. Math. Soc. 29 (2016), 95-146
- DOI: https://doi.org/10.1090/S0894-0347-2014-00821-3
- Published electronically: October 31, 2014
- PDF | Request permission
Abstract:
We prove that if $L$ is a finite simple group of Lie type and $A$ a set of generators of $L$, then either $A$ grows, i.e., $|A^3| > |A|^{1+\varepsilon }$ where $\varepsilon$ depends only on the Lie rank of $L$, or $A^3=L$. This implies that for simple groups of Lie type of bounded rank a well-known conjecture of Babai holds, i.e., the diameter of any Cayley graph is polylogarithmic. We also obtain new families of expanders.
A generalization of our proof yields the following. Let $A$ be a finite subset of $SL(n,\mathbb {F})$, $\mathbb {F}$ an arbitrary field, satisfying $\big |A^3\big |\le \mathcal {K}|A|$. Then $A$ can be covered by $\mathcal {K}^m$, i.e., polynomially many, cosets of a virtually soluble subgroup of $SL(n,\mathbb {F})$ which is normalized by $A$, where $m$ depends on $n$.
References
- Fred Annexstein and Marc Baumslag, On the diameter and bisector size of Cayley graphs, Math. Systems Theory 26 (1993), no. 3, 271–291. MR 1209998, DOI 10.1007/BF01371728
- L. Babai, W. M. Kantor, and A. Lubotsky, Small-diameter Cayley graphs for finite simple groups, European J. Combin. 10 (1989), no. 6, 507–522. MR 1022771, DOI 10.1016/S0195-6698(89)80067-8
- László Babai and Ákos Seress, On the diameter of permutation groups, European J. Combin. 13 (1992), no. 4, 231–243. MR 1179520, DOI 10.1016/S0195-6698(05)80029-0
- Cristina Blanco, Gabriela Jeronimo, and Pablo Solernó, Computing generators of the ideal of a smooth affine algebraic variety, J. Symbolic Comput. 38 (2004), no. 1, 843–872. MR 2094559, DOI 10.1016/j.jsc.2004.02.002
- Jean Bourgain and Alex Gamburd, Uniform expansion bounds for Cayley graphs of $\textrm {SL}_2(\Bbb F_p)$, Ann. of Math. (2) 167 (2008), no. 2, 625–642. MR 2415383, DOI 10.4007/annals.2008.167.625
- Jean Bourgain and Alex Gamburd, Expansion and random walks in $\textrm {SL}_d(\Bbb Z/p^n\Bbb Z)$. II, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 5, 1057–1103. With an appendix by Bourgain. MR 2538500, DOI 10.4171/JEMS/175
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Affine linear sieve, expanders, and sum-product, Invent. Math. 179 (2010), no. 3, 559–644. MR 2587341, DOI 10.1007/s00222-009-0225-3
- J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), no. 1, 27–57. MR 2053599, DOI 10.1007/s00039-004-0451-1
- Emmanuel Breuillard, Ben Green, and Terence Tao, Linear approximate groups, Electron. Res. Announc. Math. Sci. 17 (2010), 57–67. MR 2718104, DOI 10.3934/era.2010.17.57
- Emmanuel Breuillard, Ben Green, and Terence Tao, Approximate subgroups of linear groups, Geom. Funct. Anal. 21 (2011), no. 4, 774–819. MR 2827010, DOI 10.1007/s00039-011-0122-y
- Emmanuel Breuillard and Ben Green, Approximate groups, II: The solvable linear case, Q. J. Math. 62 (2011), no. 3, 513–521. MR 2825469, DOI 10.1093/qmath/haq011
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Arjeh M. Cohen and Gary M. Seitz, The $r$-rank of the groups of exceptional Lie type, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 3, 251–259. MR 914084, DOI 10.1016/1385-7258(87)90014-X
- Claude Chevalley, Classification des groupes algébriques semi-simples, Springer-Verlag, Berlin, 2005 (French). Collected works. Vol. 3; Edited and with a preface by P. Cartier; With the collaboration of Cartier, A. Grothendieck and M. Lazard. MR 2124841
- Oren Dinai, Growth in $\textrm {SL}_2$ over finite fields, J. Group Theory 14 (2011), no. 2, 273–297. MR 2788087, DOI 10.1515/JGT.2010.056
- Klaus Doerk and Trevor Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, vol. 4, Walter de Gruyter & Co., Berlin, 1992. MR 1169099, DOI 10.1515/9783110870138
- György Elekes and Zoltán Király, On the combinatorics of projective mappings, J. Algebraic Combin. 14 (2001), no. 3, 183–197. MR 1869409, DOI 10.1023/A:1012799318591
- Walter Feit and Jacques Tits, Projective representations of minimum degree of group extensions, Canadian J. Math. 30 (1978), no. 5, 1092–1102. MR 498824, DOI 10.4153/CJM-1978-092-5
- G. A. Freĭman, Groups and the inverse problems of additive number theory, Number-theoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalinin. Gos. Univ., Moscow, 1973, pp. 175–183 (Russian). MR 0435006
- Gregory A. Freiman, On finite subsets of nonabelian groups with small doubling, Proc. Amer. Math. Soc. 140 (2012), no. 9, 2997–3002. MR 2917072, DOI 10.1090/S0002-9939-2012-11156-6
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Nick Gill and Harald Andrés Helfgott, Growth of small generating sets in $\textrm {SL}_n(\Bbb Z/p\Bbb Z)$, Int. Math. Res. Not. IMRN 18 (2011), 4226–4251. MR 2836020
- Alireza Salehi Golsefidy and Peter Sarnak, The affine sieve, J. Amer. Math. Soc. 26 (2013), no. 4, 1085–1105. MR 3073885, DOI 10.1090/S0894-0347-2013-00764-X
- W. T. Gowers, Quasirandom groups, Combin. Probab. Comput. 17 (2008), no. 3, 363–387. MR 2410393, DOI 10.1017/S0963548307008826
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- H. A. Helfgott, Growth and generation in $\textrm {SL}_2(\Bbb Z/p\Bbb Z)$, Ann. of Math. (2) 167 (2008), no. 2, 601–623. MR 2415382, DOI 10.4007/annals.2008.167.601
- H. A. Helfgott, Growth in $\textrm {SL}_3(\Bbb Z/p\Bbb Z)$, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 761–851. MR 2781932, DOI 10.4171/JEMS/267
- H. A. Helfgott, Growth in groups: ideas and perspectives, preprint, arXiv:1303.0239
- E. Hrushovski, The elementary theory of the Frobenius automorphisms. preprint, arXiv:math.LO/0406514
- Ehud Hrushovski, Stable group theory and approximate subgroups, J. Amer. Math. Soc. 25 (2012), no. 1, 189–243. MR 2833482, DOI 10.1090/S0894-0347-2011-00708-X
- E. Hrushovski and A. Pillay, Definable subgroups of algebraic groups over finite fields, J. Reine Angew. Math. 462 (1995), 69–91. MR 1329903
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976, DOI 10.1090/surv/043
- I. Martin Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]. MR 2270898, DOI 10.1090/chel/359
- E. I. Khukhro, Ant. A. Klyachko, N. Yu. Makarenko, and Yu. B. Melnikova, Automorphism invariance and identities, Bull. Lond. Math. Soc. 41 (2009), no. 5, 804–816. MR 2557461, DOI 10.1112/blms/bdp056
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Jordan S. Ellenberg, Chris Hall, and Emmanuel Kowalski, Expander graphs, gonality, and variation of Galois representations, Duke Math. J. 161 (2012), no. 7, 1233–1275. MR 2922374, DOI 10.1215/00127094-1593272
- Michael Larsen, Exponential generation and largeness for compact $p$-adic Lie groups, Algebra Number Theory 4 (2010), no. 8, 1029–1038. MR 2832632, DOI 10.2140/ant.2010.4.1029
- Vicente Landazuri and Gary M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418–443. MR 360852, DOI 10.1016/0021-8693(74)90150-1
- Martin W. Liebeck and Gary M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3409–3482. MR 1458329, DOI 10.1090/S0002-9947-98-02121-7
- Alexander Lubotzky, Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 1, 113–162. MR 2869010, DOI 10.1090/S0273-0979-2011-01359-3
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29–100. MR 0282975
- Madhav V. Nori, On subgroups of $\textrm {GL}_n(\textbf {F}_p)$, Invent. Math. 88 (1987), no. 2, 257–275. MR 880952, DOI 10.1007/BF01388909
- N. Nikolov and L. Pyber, Product decompositions of quasirandom groups and a Jordan type theorem, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 4, 1063–1077. MR 2800484, DOI 10.4171/JEMS/275
- Nikolay Nikolov and Dan Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. (2) 165 (2007), no. 1, 171–238. MR 2276769, DOI 10.4007/annals.2007.165.171
- John E. Olson, On the sum of two sets in a group, J. Number Theory 18 (1984), no. 1, 110–120. MR 734442, DOI 10.1016/0022-314X(84)90047-7
- L. Pyber, E. Szabó, Growth in finite simple groups of Lie type. announcement: arXiv:1001.4556
- L. Pyber, E. Szabó, Growth in finite simple groups of Lie type of bounded rank, 2010, preprint, arXiv:1005.1858
- L. Pyber, E. Szabó, Growth in linear groups, in preparation
- László Pyber, Asymptotic results for permutation groups, Groups and computation (New Brunswick, NJ, 1991) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 11, Amer. Math. Soc., Providence, RI, 1993, pp. 197–219. MR 1235804, DOI 10.1090/dimacs/011/14
- I. Z. Ruzsa and S. Turjányi, A note on additive bases of integers, Publ. Math. Debrecen 32 (1985), no. 1-2, 101–104. MR 810596, DOI 10.5486/pmd.1985.32.1-2.13
- Terence Tao, Product set estimates for non-commutative groups, Combinatorica 28 (2008), no. 5, 547–594. MR 2501249, DOI 10.1007/s00493-008-2271-7
- Péter P. Varjú, Expansion in $SL_d(\scr O_K/I)$, $I$ square-free, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 1, 273–305. MR 2862040, DOI 10.4171/JEMS/302
Bibliographic Information
- László Pyber
- Affiliation: A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest, Hungary
- Email: pyber.laszlo@renyi.mta.hu
- Endre Szabó
- Affiliation: A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest, Hungary
- Email: szabo.endre@renyi.mta.hu
- Received by editor(s): June 11, 2014
- Received by editor(s) in revised form: September 15, 2014
- Published electronically: October 31, 2014
- Additional Notes: The first author is supported in part by OTKA 78439 and K84233
The second author is supported in part by OTKA NK81203, K84233 and by the MTA Rényi “Lendület” Groups and Graphs Research Group - © Copyright 2014 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 95-146
- MSC (2010): Primary 20F69; Secondary 20G15, 20D06\, \!
- DOI: https://doi.org/10.1090/S0894-0347-2014-00821-3
- MathSciNet review: 3402696