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DISTANCE TO NORMAL ELEMENTS

IN C∗-ALGEBRAS OF REAL RANK ZERO

ILYA KACHKOVSKIY AND YURI SAFAROV

Introduction

The problem of estimating the distance from a bounded operator A to the set
of normal operator in terms of ‖[A,A∗]‖ dates back to Halmos [15]. The original
question is as follows:

(C) Is there a continuous function F on R+ with F (0) = 0 such that for each
pair of Hermitian matrices X,Y with ‖X‖+ ‖Y ‖ � 1 there exists a pair of
commuting Hermitian matrices X ′, Y ′ satisfying the estimate ‖X −X ′‖+
‖Y − Y ′‖ � F

(
‖[X,Y ]‖

)
?

Introducing A = X + iY , one can reformulate (C) in terms of one operator as
follows:

(C′) Is there a continuous function F on R+ with F (0) = 0 such that the distance
from a matrix A with ‖A‖ � 1 to the set of normal matrices does not exceed
F

(
‖[A,A∗]‖

)
?

Clearly, the answer is positive if we allow F to depend on the dimension. A
survey of dimension-dependent results can be found in [11, Chapter I].

The problem of the existence of a dimension-independent function F is much
more challenging. It was open until 1995, when Huaxin Lin found deep C∗-algebraic
arguments showing that such a function F does exist [17]. Later, Friis and Rørdam
gave a shorter proof of Lin’s theorem [13]. Note that, without additional conditions
on X and Y , Lin’s theorem does not hold for non-Hermitian matrices or self-adjoint
operators acting on a Hilbert space (see, for instance, [8, 9, 11]).

The proofs in [13,17] are non-constructive and do not give any information about
the function F . To the best of our knowledge, the only quantitative result in this
direction is due to Hastings, who showed in [16] that the distance from A to the set
of normal matrices is estimated by Cε ‖[A,A∗]‖1/5−ε for all finite matrices A with
‖A‖ � 1, where Cε is a constant depending on ε > 0. For homogeneity reasons, the
function F in (C) or (C′) cannot decay faster than t1/2 as t → 0. If we drop the
condition ‖A‖ � 1, it also cannot grow slower than t1/2 as t → ∞. In [11], Davidson
and Szarek conjectured that for finite matrices one can indeed take F (t) = C t1/2.

Received by the editors April 15, 2014 and, in revised form, September 12, 2014.
2010 Mathematics Subject Classification. Primary 47A05; Secondary 47L30, 15A27.
Key words and phrases. Almost commuting operators, self-commutator, Brown-Douglas-

Fillmore theorem.
The first author was supported by King’s Annual Fund and King’s Overseas Research

Studentships, King’s College London, and partially by NSF Grant DMS-1101578.

c©2015 American Mathematical Society

61

http://www.ams.org/jams/
http://www.ams.org/jams/
http://www.ams.org/jourcgi/jour-getitem?pii=S0894-0347-2015-00823-2


62 ILYA KACHKOVSKIY AND YURI SAFAROV

A closely related result is the famous Brown-Douglas-Fillmore (BDF) theorem
[6]. Recall that an operator A on a Hilbert space is said to be essentially normal if
its self-commutator [A,A∗] is compact. The BDF theorem states that a bounded
essentially normal operator A on a separable Hilbert space is a compact pertur-
bation of a normal operator if and only if A has a trivial index function (that is,
ind(A − zI) = 0 whenever the operator A − zI is Fredholm). In [14], the authors
gave a simple proof of this theorem, which essentially repeats their proof of Lin’s
theorem in [13].

In [4], Berg and Davidson obtained a quantitative version of the BDF theorem.
They proved that for each bounded closed set Ω ⊂ C there exists a continuous
function FΩ with FΩ(0) = 0 such that the following is true. If A is an essentially
normal operator with a trivial index function, ‖[A,A∗]‖1/2 � ε and, in addition,

‖(A− λI)−1‖ < (dist(λ,Ω)− ε)
−1

whenever dist(λ,Ω) > ε, then there is a normal
operator Nε with a spectrum in Ω such that A − Nε is compact and ‖A −Nε‖ �
FΩ(ε). Note that proofs in [4] could be simplified by applying Lin’s theorem, which
was not known at that time. Instead, the authors used an absorption result of
Davidson [9].

The main result of this paper is Theorem 1.1, which gives explicit bounds for
the distance to the set of normal elements in an abstract C∗-algebra. It refines and
extends all the results mentioned above. In particular, Theorem 1.1 implies

– the estimate (1.3) showing that the conjecture from [11] is true,
– Berg and Davidson’s theorem with FΩ(ε) = Cε, where C is a constant
independent of Ω (see Remark 6.1), and

– a quantitative version of the BDF theorem, which holds for operators with
non-compact self-commutators (see Corollary 1.4).

1. Notation and results

1.1. Main theorem. Let A be a unital C∗-algebra. Recall that A is said to have
real rank zero if any of its self-adjoint element can be approximated by self-adjoint
elements with finite spectra. Further on

• GL(A) denotes the group of invertible elements of A;
• GL0(A) is the connected component of GL(A) containing the identity;
• N(A) denotes the set of normal elements of A;
• Nf (A) is the set of normal elements with finite spectra;
• d1(A) := sup

λ∈C

dist(A− λI,GL0(A)).

Theorem 1.1. For any unital C∗-algebra A of real rank zero and all A ∈ A

dist (A,Nf (A)) � C
(
‖[A,A∗]‖1/2 + d1(A)

)
,(1.1)

dist (A,Nf (A)) � max
{
(5‖A‖)−1‖[A,A∗]‖ , d1(A)

}
,(1.2)

where C is a constant independent of A and A.

Remark 1.2. All von Neumann algebras, including the algebra of bounded opera-
tors B(H) on a Hilbert spaceH, have real rank zero. IfA is a von Neumann algebra,

then N(A) ⊂ Nf (A) and GL0(A) = GL(A), so that we can drop the subscripts f
in (1.1), (1.2), and 0 in the definition of d1(A).

Remark 1.3. If the complement of the spectrum of A is connected and dense in
C, then d1(A) = 0. Indeed, in this case A− λI can be approximated by invertible
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elements of the form A−μI, and each invertible A−μI belongs to GL0(A) because
−μ−1(A−μI) → I as μ → ∞. In particular, d1(A) = 0 for finite matrices and, more
generally, compact operators A. If H is separable and A = B(H), then d1(A) = 0
if and only if A has a trivial index function (see, for instance, [12, Section 3.2] and
references therein). In the general case, d1(A) can be estimated in terms of the
so-called modulus of invertibility [5, Theorem 2].

In view of the above remark, Theorem 1.1 implies that for any two Hermitian
matrices X,Y there exists a pair of commuting Hermitian matrices X ′, Y ′ such that

(1.3) ‖X −X ′‖+ ‖Y − Y ′‖ � C ‖[X,Y ]‖1/2,
where the constant C does not depend on X, Y and the dimension. It also implies
the following quantitative version of the BDF theorem.

Corollary 1.4. Assume that H is separable and denote by K(H) the space of
compact operators on H. If A ∈ B(H) and d1(A) = 0, then there exists a normal
operator A′ ∈ B(H) such that

(1.4)
‖A−A′‖ess � C ‖[A,A∗]‖1/2ess ,

‖A−A′‖ � C
(
‖[A,A∗]‖1/2 + ‖A‖1/2‖[A,A∗]‖1/4ess

)
,

where ‖S‖ess := inf
K∈K(H)

‖S − K‖ is the essential norm and C is a constant inde-

pendent of A.

Remark 1.5. The upper bound (1.1) is a difficult result, which is new even for
finite matrices. The lower bound (1.2) is almost obvious and is proved in few
lines (see Subsection 6.2). We have included it in Theorem 1.1 only for the sake of
completeness. The example Aε = X+iεY with non-commuting Hermitian matrices
X,Y shows that (5‖A‖)−1‖[A,A∗]‖ in (1.2) cannot be replaced by C‖[A,A∗]‖1/2.
On the other hand, if Aε =

(
εB 0
0 I

)
and [B,B∗] �= 0, then the distance from A

to the set of normal matrices is estimated from above and below by Cε with some
constants C depending on B. This shows that the distance from A to Nf (A) may

decay as ‖[A,A∗]‖1/2 when [A,A∗] tends to zero.

1.2. Notation. By the Gelfand-Naimark theorem, every C∗-algebra A can be iso-
morphically embedded into the algebra of bounded operators B(H) on a (not nec-
essarily separable) Hilbert space H. In order to emphasize the operator-theoretic
nature of our proofs, we shall always assume that A ⊂ B(H) and refer to its ele-
ments as “operators.”

We shall use the following notation:

• Or(λ) := {z ∈ C : |z − λ| < r} is the open disc of radius r about λ, and
Or := Or(0).

• C and δ denote universal constants, which do not depend on the C∗-algebras
and operators under consideration.

• σ(A) is the spectrum of the operator A.
• M2(A) is the C∗-subalgebra of B(H ⊕H) formed by 2× 2-matrices whose
entries belong to A. If A has real rank zero, then M2(A) also has real rank
zero (see, for instance, [7]).

• P :=

(
I 0
0 0

)
∈ M2(A) is the projection onto the first component of H⊕H.

• diagP T := PTP + (1− P )T (1− P ) where T ∈ M2(A).
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• GL0(A⊕A) :=

{(
A1 0
0 A2

)
∈ M2(A) : A1, A2 ∈ GL0(A)

}
.

• d2(T, λ) := dist(T − λI,GL0(A⊕A)) and d2(T ) := supλ∈C d2(T, λ), where
T ∈ M2(A). Note that

(1.5) ‖T − diagP T‖ = ‖[P, T ]‖ � d2(T, 0) .

1.3. Plan of proof. The first step is a generalization of [9, Corollary 4.5]. In
Section 3 we prove that, under a certain condition on A ∈ A, there exists a normal
operator T ∈ M2(A) such that ‖A− PTP‖ � C ‖[A,A∗]‖1/2 and d2(T ) � d1(A) +
C ‖[A,A∗]‖1/2.

The next step is the most difficult part of the proof. In Theorem 5.1 we show
that for every normal operator T ∈ M2(A) with a sufficiently small d2(T ) there
exists a normal operator T0 ∈ M2(A) with a finite spectrum such that ‖T −T0‖ � 3
and ‖[P, T0]‖ � C d2(T ). If d2(T ) = 0, then Theorem 5.1 follows from [14, Theorem
3.2]. However, this does not help, since the operator T constructed in the first step
is not block diagonal and, consequently, d2(T ) > 0.

Our proof of Theorem 5.1 uses the technique introduced in [13] and further
developed in [12]. It is based on successive reductions of the operator to normal
operators whose spectra do not contain certain subsets of the complex plane. One
can think of this process as removing subsets from the spectrum.

In order to obtain the uniform estimates for ‖T − T0‖ and ‖[P, T0]‖ in Theorem
5.1, we use two auxiliary results proved in Section 4. Their proof follows the same
lines as that of Lemmas 4.1 and 4.2 in [12], but with additional control of the
commutator [P, T0].

Finally, in Section 6 we adjust the block PT0P of the operator T0 to obtain a
normal operator lying within the prescribed distance from A. This yields Theorem
1.1. After that, we deduce Corollary 1.4 by combining (1.1) with [12, Theorem 3.8].

Throughout the paper, we shall be using various results on operator Lipschitz
functions. Their statements and proofs are given in the next section.

2. Operator Lipschitz functions

Definition 2.1. Let F ⊂ C be a closed set. A continuous function f : F → C

belongs to the space OL(F) if

‖f‖OL(F) := sup
T1,T2

‖f(T1)− f(T2)‖
‖T1 − T2‖

< ∞ ,

where the supremum is taken over all bounded normal operators Ti acting on an
infinite dimensional Hilbert space H such that σ(Ti) ⊂ F and T1 �= T2.

Remark 2.2. In the above definition, one can assume that the spaceH is separable.
Indeed, the C∗-algebra generated by two given operators T1, T2 and the identity
operator is separable. Hence it is isomorphic to a subalgebra of B(H ′) for some
fixed separable Hilbert space H ′ (see, for instance, [10, Theorem I.9.12]). It follows
that for each pair of operators T1, T2 ∈ B(H) there exist operators T ′

1, T
′
2 ∈ B(H ′)

such that ‖T1 − T2‖ = ‖T ′
1 − T ′

2‖ and ‖f(T1)− f(T2)‖ = ‖f(T ′
1)− f(T ′

2)‖.

The spaces OL(F) are complex quasi-Banach spaces, in which only constant
functions have zero quasi-norms. The functions f ∈ OL(F) are said to be operator
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Lipschitz. It is well known that an operator Lipschitz function f is commutator
Lipschitz in the sense that

(2.1) ‖[X, f(N)]‖ � ‖f‖OL(F) ‖[X,N ]‖
for all N ∈ N(B(H))) and X = X∗ ∈ B(H) (see, for instance, [3, Theorem 3.1]).
The best known sufficient conditions for the inclusion of f ∈ OL(F) are given
in [1, 2, 19] in terms of Besov spaces. For our purposes, it is sufficient to know
that C2(F) ⊂ OL(F) and ‖f‖OL(F) � C ‖f‖C2(F) for F = R and F = C, where
‖f‖C2(F) := max

0�|α|�2
sup
ζ∈F

|∂α
ζ f(ζ)| and C is some constant.

We shall need the following simple lemmas.

Lemma 2.3. If ρ ∈ C(R), then, for all T1, T2 ∈ B(H),

‖ρ(T ∗
1 T1)− ρ(T ∗

2 T2)‖ � ‖ρ(t2)‖OL(R)‖T1 − T2‖,
‖T1ρ(T

∗
1 T1)− T2ρ(T

∗
2 T2)‖ � ‖tρ(t2)‖OL(R)‖T1 − T2‖.

Proof. Consider the self-adjoint operators Xj =

(
0 Tj

T ∗
j 0

)
∈ B(H ⊕H). Since

ρ(X2
j ) =

(
ρ(TjT

∗
j ) 0

0 ρ(T ∗
j Tj)

)
and Xjρ(X

2
j ) =

(
0 Tjρ(T

∗
j Tj)

T ∗
j ρ(TjT

∗
j ) 0

)
,

we obtain

‖ρ(T ∗
1 T1)− ρ(T ∗

2 T2)‖ � ‖ρ(X2
1 )− ρ(X2

2 )‖
� ‖ρ(t2)‖OL(R)‖X1 −X2‖ = ‖ρ(t2)‖OL(R)‖T1 − T2‖

and, similarly,

‖T1ρ(T
∗
1 T1)− T2ρ(T

∗
2 T2)‖ � ‖X1ρ(X

2
1 )−X2ρ(X

2
2 )‖ � ‖tρ(t2)‖OL(R)‖T1 − T2‖.

Lemma 2.4. Suppose that χ ∈ C∞
0 (C), 0 � χ � 1, and let λ1, λ2, . . . , λk ∈ C be a

finite collection of points such that χiχj ≡ 0 for all i �= j, where χj(z) := χ(z−λj).

Let also M :=
∑k

j=1 χj(T )Sjχj(T ), where T ∈ N(B(H)) and Sj ∈ B(H). If

‖Sj‖ � 1 and [Sj , χj(T )] = 0 for all j = 1, . . . , k, then

‖[Q,M ]‖ � Cχ ‖[Q, T ]‖ max
j

‖Sjχj(T )‖+max
j

‖[Q,Sj ]‖

for all self-adjoint Q ∈ B(H), where Cχ is a constant depending only on χ.

Proof. We have [Q,M ] = R1 + R2 + R3 , where R1 =
∑k

j=1[Q,χj(T )]Sjχj(T ) ,

R2 =
∑k

j=1 χj(T )[Q,Sj ]χj(T ) , and R3 =
∑k

j=1 χj(T )Sj [Q,χj(T )] .

Denote by χ̂ the Fourier transform of χ(x+iy) as a function of two real variables
x and y. Let λj = xj + iyj and T = X + iY , where X,Y are self-adjoint. Then
[X,Y ] = 0 and

R1 =
1

4π2

∫
R2

χ̂(s, t) [Q, eisX+itY ]
{ k∑
j=1

e−isxj−ityjSjχj(T )
}
ds dt.

Since the operators Sjχj(T ) act in mutually orthogonal subspaces, the norm of the
sum in curly brackets does not exceed maxj ‖Sjχ(T−λjI)‖. Also, ‖[Q, eisX+itY ]‖ �
(|s|+ |t|) ‖[Q, T ]‖ because

‖[Q, eisX ]‖ = ‖[e−isXQeisX −Q‖ =
∥∥∥
∫ s

0

e−itX [Q,X]eitXdt
∥∥∥ � |s| ‖[Q,X]‖
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and, similarly, ‖[Q, eitY ]‖ � |t| ‖[Q, Y ]‖. It follows that

(2.2) ‖R1‖ � ‖[Q, T ]‖
4π2

max
j

‖Sjχj(T )‖
∫
R2

(|s|+ |t|) |χ̂(s, t)| ds dt.

Similar arguments show that ‖R3‖ admits the same estimate. It remains to notice
that ‖R2‖ � maxj ‖[Q,Sj ]‖ because χiχj ≡ 0 for i �= j.

Lemma 2.5. Let ρ ∈ C∞
0 (R) be a non-negative function such that supp ρ ⊂ [−1, 1]

and
∑

n∈Z
ρ2n(x) = 1, where ρn(x) = ρ(x−n). If X,Y ∈ B(H) are self-adjoint and

Y ′ =
∑

n∈Z
ρn(X)Y ρn(X) , then

(d1) ‖EY ′E‖ � ‖EY E‖ for any spectral projection E of the operator X;
(d2) ‖[X,Y ′]‖ � ‖[X,Y ]‖ ;
(d3) ‖Y − Y ′‖ � Cρ‖[X,Y ]‖ where Cρ is a constant depending only on ρ.

Proof. If aI � EY E � bI, then a‖u‖2 � (EY ′Eu, u) � b‖u‖2 for all u ∈ H.
This implies (d1). Since the commutator [X,Y ] is skew-adjoint, the inequality (d2)
follows from the identity [X,Y ′] =

∑
n∈Z

ρn(X)[X,Y ]ρn(X) by similar arguments.
Finally, since Y − Y ′ =

∑
n[Y, ρn(X)]ρn(X), the estimate (d3) is proved in the

same way as (2.2).

3. An extension theorem

The following theorem is a refined version of [9, Corollary 4.5]. The latter pro-

vides normal operators N ∈ B(H) and T ∈ B(H⊕H) satisfying (e1) with C = 50
√
2

and (e2). If A = B(H) and dimH < ∞, then (e3) follows from (e1), so that
[9, Corollary 4.5] is sufficient to prove (1.3).

Theorem 3.1. Let A be a unital C∗-algebra, and let A ∈ A. If ReA can be
approximated by self-adjoint operators from A with finite spectra, then there exist
normal operators N ∈ A and T ∈ M2(A) such that

(e1) ‖A⊕N − T‖ � C ‖[A,A∗]‖1/2,
(e2) ‖N‖ � ‖A‖ and ‖T‖ � ‖A‖,
(e3) d2(T ) � d1(A) + C ‖[A,A∗]‖1/2,

where C is a constant independent of A and A.

Proof. Let A = X + iY , where X,Y are self-adjoint. First of all, let us make some
reductions. Note that the statements (e1)–(e3) are invariant under multiplication
of A by a scalar. Therefore, without loss of generality, we shall be assuming that
‖[A,A∗]‖ = 1. Since X is approximated by operators with finite spectra, we can
also assume that X has a finite spectrum. Finally, (e2) can be replaced with the
weaker condition

(e′2) ‖N‖ � ‖A‖+ 1.

Indeed, since ‖[A,A∗]‖ = 1, from the estimates (e1) and (e′2) it follows that

(e′′2) ‖T‖ � ‖A‖+ C + 1.

If c = ‖A‖
‖A‖+C+1 , then, in view of (e1), (e

′
2), and (e′′2),

‖A⊕ cN − cT‖ � ‖A⊕N − T‖+ (1− c) (‖N‖+ ‖T‖)
� C + 2(1− c) (‖A‖+ C + 1) = 3C + 2 ,
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‖cN‖ � ‖A‖, ‖cT‖ � ‖A‖, and d2(cT ) = c d2(T ) � d2(T ) . Thus we see that
(e1)–(e3) hold with the constant C replaced by 3C+2 for the normal operators cN
and cT .

Let us fix a function ρ satisfying the conditions of Lemma 2.5, and denote by En

the spectral projections of X corresponding to the intervals [n;n+ 1). Since σ(X)
is finite, the projections En belong to A. Consider the operators

Πn :=

(
ρ2n(X) ψn(X)
ψn(X) En−1 + En − ρ2n(X)

)
∈ M2(A) ,

where ρn(x) = ρ(x − n) and ψn(x) = (−1)nρn(x)(ρn−1(x) + ρn+1(x)). One can
easily see that Πn are mutually orthogonal projections such that

(3.1)
∑
n∈Z

Πn =

(
I 0
0 I

)
and Πn =

(
En−1 + En 0

0 En−1 + En

)
Πn.

Note that [Πn, Em ⊕ Em] = 0 for all n,m ∈ Z. It follows that (En ⊕ En)Πm are
mutually orthogonal projections such that

(3.2)
∑

n,m∈Z

(
En 0
0 En

)
Πm =

∑
|n−m|�1

(
En 0
0 En

)
Πm =

(
I 0
0 I

)
.

Let Y ′ be the operator defined in Lemma 2.5, and let Y ′′ =
∑

m∈Z
EmY ′Em.

We claim that the normal operators

N :=
∑
n∈Z

En (nI + iY ′)En and T :=
∑
n∈Z

Πn

(
nI + iY ′ 0

0 nI + iY ′′

)
Πn

satisfy the conditions (e1), (e
′
2), and (e3).

First, let us prove (e1). Since En(X − nI)En � 1, using (3.2), we obtain

(3.3) ‖Re(A⊕N)− ReT‖ � 1 +
∥∥∥∑

n

n(En ⊕ En −Πn)
∥∥∥

= 1 +
∥∥∥∑
n,m

(n(En ⊕ En)Πm − n(Em ⊕ Em)Πn)
∥∥∥

= 1 +
∥∥∥ ∑
|n−m|�1

(n−m)(En ⊕ En)Πm

∥∥∥ � 2.

For the imaginary part, in view of the estimate (d3) in Lemma 2.5, we have

(3.4) ‖ Im(A⊕N)− Y ′ ⊕ Y ′′‖ = ‖Y ⊕ Y ′′ − Y ′ ⊕ Y ′′‖ � Cρ ,

where Cρ is a constant depending only on the choice of ρ. Note that EnY
′Em = 0

whenever |n − m| � 2. These identities and the second equality (3.1) imply that
ImT =

∑
|n−m|�2 Πn(Y

′ ⊕ Y ′′)Πm and, consequently,

(3.5) ‖Y ′ ⊕ Y ′′ − ImT‖ =
∥∥∥ ∑
1�|n−m|�2

Πn(Y
′ ⊕ Y ′′)Πm

∥∥∥
� 4 max

1�|n−m|�2
‖Πn(Y

′ ⊕ Y ′′)Πm‖ � 4max
n

‖[Πn, Y
′ ⊕ Y ′′]‖.

Since [En, Y
′′] = [En−1, Y

′′] = 0, we have

(3.6) [Πn, Y
′ ⊕ Y ′′] =

(
[ρ2n(X), Y ′] ψn(X)Y ′′ − Y ′ψn(X)

ψn(X)Y ′ − Y ′′ψn(X) [Y ′′, ρ2n(X)]

)
.
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The operator (3.6) is skew-adjoint and

(3.7) ψn(X)Y ′′ − Y ′ψn(X)

= (−1)n ([ρn(X)ρn+1(X), Y ′]En + [ρn(X)ρn−1(X), Y ′]En−1) .

By Lemma 2.5, ‖[X,Y ′]‖ � ‖[X,Y ]‖ = 1
2 ‖[A,A∗]‖ = 1/2 and, similarly,

‖[X,Y ′′]‖ =
∥∥∥∑
m∈Z

Em[X,Y ′]Em

∥∥∥ � ‖[X,Y ′]‖ � 1/2 .

Since C2-norms of ρ2n and ρnρn+1 are estimated by a constant independent of n,
the inequality (2.1) and (3.7) imply that the norms of all entries in the right hand
side of (3.6) are estimated by constants depending only on ρ. Together with (3.3),
(3.4), and (3.5), this yields (e1).

Obviously, ‖En(X − nI)En‖ � 1. The estimate (d1) in Lemma 2.5 implies that
‖En(nI + iY ′)En‖ � ‖En(nI + iY )En‖ . It follows that

‖N‖ = max
n

‖En(nI + iY ′)En‖ � max
n

‖En(nI + iY )En‖ � ‖A‖+ 1.

Finally, σ(N) is a bounded subset of Z + iR. By Remark 1.3, d1(N) = 0. This
equality and the estimate (e1) imply (e3).

4. Two auxiliary theorems

Recall that any invertible operator T has the polar decomposition T = V |T |,
where |T | =

√
T ∗T and V = T |T |−1 is a unitary operator from the same C∗-

algebra as T . A normal operator T also admits the polar decomposition T = V |T |
with a unitary V . However, if T is not invertible, then, generally speaking, the
unitary polar part V of T is not uniquely defined and may not belong to the same
C∗-algebra. In both cases, the unitary operator V satisfies V ρ(|T |) = ρ(|T ∗|)V for
all ρ ∈ C(R1). If T is normal, this implies that V commutes with all continuous
functions of T .

In the next two theorems V is a unitary polar part of T and Πr is the spectral
projection of T onto the disc Or .

Theorem 4.1. There exist constants δ > 0 and C > 0 such that for any normal
T ∈ M2(A) with d2(T, 0) < δ one can find a unitary operator U ∈ M2(A) satisfying
the following conditions:

(u1) diagP U ∈ GL0(A⊕A),
(u2) [U,Πr] = 0 for r � 1,
(u3) U(I −Π1) = V (I −Π1),
(u4) ‖[P,U ]‖ � Cd2(T, 0).

Theorem 4.2. There exist constants δ > 0 and C > 0 such that the following is
true. Let A have real rank zero, and let T ∈ M2(A) be a normal operator such that
σ(T )∩O3 is a subset of the straight line eiθR, where θ ∈ [0, π). If ‖[P, T ]‖ < δ and
diagP (T ± ieiθI) ∈ GL0(A⊕A), then one can find a unitary operator U ∈ M2(A)
satisfying (u1) and the following conditions:

(u′2) [U,Πr] = 0 for 1 � r � 2,
(u′3) U(Π2 −Π1) = V (Π2 −Π1),
(u′4) ‖[P,U ]‖ � C‖[P, T ]‖,
(u′5) the spectrum of U |RanΠ2

is contained in the intersection of eiθR with the
unit circle.
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The proofs of Theorems 4.1 and 4.2 use the following lemmas.

Lemma 4.3. Suppose that A is a C∗-algebra of real rank zero, and let U ∈ GL0(A)
be unitary. Then for any ε > 0 there exists a unitary operator Vε ∈ GL0(A) such
that −1 /∈ σ(Vε) and ‖U − Vε‖ � ε.

Lemma 4.3 is contained in [18]. See also [12, Lemma 1.8] for a more elementary
proof.

Lemma 4.4. Let t �→ Gt be a continuous path in GL(M2(A)) such that ‖G−1
t ‖ <

‖[P,Gt]‖−1 for all t ∈ [0, 1] and diagP G0 ∈ GL0(A⊕A). Then diagP G1 ∈ GL0(A⊕
A).

Proof. Since diagP Gt = Gt

(
I −G−1

t (Gt − diagP Gt)
)
and ‖Gt − diagP Gt‖ =

‖[P,Gt]‖, the operators diagP Gt are also invertible. Hence, the path t �→ diagP Gt

connects G0 and G1 in GL(A)⊕GL(A). As G0 ∈ GL0(A⊕A), so does G1.

Lemma 4.5. If there exists a unitary operator V such that ‖S − V ‖ � ε < 1, then

the operator S is invertible and ‖S − S|S|−1‖ < ε (1+ε)
1−ε .

Proof. If S = V + R with ‖R‖ � ε, then (1 − ε)2I � S∗S � (1 + ε)2I. It follows
that S is invertible. Since (1 + ε)−1I � |S|−1 � (1− ε)−1I and ‖S‖ � (1 + ε), we
obtain ‖S − S|S|−1‖ � (1 + ε)

∥∥I − |S|−1
∥∥ � (1 + ε) ε(1− ε)−1.

Lemma 4.6. Suppose that Γ is a simple closed curve given by an equation of the
form

(4.1) Γ = {z ∈ C : |z − λ| = ϕ (arg(z − λ))},
where λ is an interior point of the domain bounded by Γ and ϕ ∈ C2(R) is a strictly
positive 2π-periodic function. Let A be a unital C∗-algebra of real rank zero, and
let T ∈ M2(A) be a normal operator such that σ(T ) ⊂ Γ and diagP (T − λI) ∈
GL0(A ⊕ A) . Then for every z0 ∈ Γ there exists a normal operator T0 such that
σ(T0) ⊂ Γ \ {z0}, T0 − λI ∈ GL0(A ⊕ A), and ‖T − T0‖ � CΓ ‖[P, T ]‖, where CΓ

is a constant depending only on Γ.

Proof. Without loss of generality, we can assume that λ = 0 and z0 ∈ R−. Also,
it is sufficient to prove the lemma assuming that ‖[P, T ]‖ is small enough, since
we have ‖T0 − T‖ � CΓ ‖[P, T ]‖ for any normal operator T0 with σ(T0) ⊂ Γ if
‖[P, T ]‖ � ε and CΓ = 2ε−1 diamΓ.

Let ϕt(z) = z (tϕ(arg z) + 1− t)−1. The functions ϕt belong to C
2 on an annulus

Ω containing Γ, and their C2(Ω)-norms are bounded by a constant depending only
on Γ. Obviously, they can be extended to C2-functions on C whose C2-norms admit
a similar estimate.

The operator ϕ1(T ) is unitary because ϕ1 maps Γ onto the unit circle. By (2.1),
we have ‖[ϕt(T ), P ]‖ � C ′

Γ ‖[P, T ]‖ for all t ∈ [0, 1] with a constant C ′
Γ depending

only on Γ. If ‖[P, T ]‖ is sufficiently small, Lemma 4.4 with Gt = ϕt(T ) implies that
S := diagP ϕ1(T ) belongs to GL0(A⊕A).

Since ‖S − ϕ1(T )‖ = ‖[ϕ1(T ), P ]‖ � C ′
Γ ‖[P, T ]‖, the operator S is close to the

unitary operator ϕ1(T ). If U = S|S|−1, then U ∈ GL0(A⊕A) and, by Lemma 4.5,
‖S − U‖ � C ′′

Γ ‖[P, T ]‖ where C ′′
Γ depends only on Γ.

Now, applying Lemma 4.3, we find a unitary U0 ∈ GL0(A ⊕ A) such that
‖U − U0‖ � ‖[P, T ]‖ and −1 /∈ σ(U0), and define T0 = φ−1

1 (U0) where ϕ−1
1 (z) =

z (ϕ(arg z)) is the inverse function. Since ϕ−1
1 maps the unit circle onto Γ and
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φ1(−1) = z0, we have σ(T0) ⊂ Γ \ {z0}. Since ϕ−1
1 belongs to C2 on a neighbor-

hood of the unit circle, it can be extended to an operator Lipshitz function on C.
Therefore the inequality ‖T − T0‖ � CΓ ‖[P, T ]‖ follows from the estimate

‖ϕ1(T )− U0‖ � ‖ϕ1(T )− S‖+ ‖S − U‖+ ‖U − U0‖ � (C ′
Γ + C ′′

Γ + 1) ‖[P, T ]‖.
Finally, T0 ∈ GL0(A ⊕ A) because the complement of its spectrum is a dense
connected set (see Remark 1.3).

Remark 4.7. One can easily extend Lemma 4.6 to a much wider class of curves
Γ, but (4.1) will be sufficient for our purposes.

4.1. Proof of Theorem 4.1. Let V ∈ B(H ⊕H) be a unitary operator such that
T = V |T |. Let us denote δ1 := d2(T, 0) and choose T0 ∈ GL0(A ⊕ A) such that
‖T − T0‖ � 2δ1. We have T0 = V0|T0| with |T0| ∈ GL0(A ⊕ A) and a unitary
V0 ∈ GL0(A⊕A).

Let ρ1 ∈ C∞(R+) be a nonincreasing function such that ρ1(t) = 1 for t ∈ [0, 1
2 ]

and ρ1(t) = 0 for t � 1. Define ρ2 :=
√
1− ρ21 and consider the operator

(4.2) S = ρ1(T
∗T )V0ρ1(T

∗T ) + V ρ22(T
∗T ).

We have V ρ22(T
∗T ) = χ(T ), where χ(z) = z|z|−1ρ22(|z|2) is a C∞-function. Thus

S ∈ M2(A). Since ρ1(|z|2) ∈ OL(C), χ(z) ∈ OL(C), and [P, V0] = 0, from (2.1) and
(1.5) it follows that

‖[P, S]‖ � 2‖[P, ρ1(T ∗T )]‖+ ‖[P, χ(T )]‖ � C1‖[P, T ]‖ � C1 δ1.

Here and in the rest of the proof C with a subscript denotes a constant depending
only on the choice of ρ1.

By Lemma 2.3,

‖ρ1(T ∗T )− ρ1(T
∗
0 T0)‖ � C2‖T − T0‖ � 2C2 δ1,

‖ρ1(TT ∗)− ρ1(T0T
∗
0 )‖ � C2‖T − T0‖ � 2C2 δ1.

Since TT ∗ = T ∗T , these estimates and the identity ρ1(T0T
∗
0 )V0 = V0ρ1(T

∗
0 T0)

imply that

(4.3) ‖S − V0ρ
2
1(T

∗
0 T0)− V ρ22(T

∗T )‖ � C3 δ1.

The function ρ2(t) vanishes in a neighborhood of zero. Hence ρ22(t
2) = tψ(t2) with

a smooth bounded function ψ and, by Lemma 2.3,

(4.4) ‖V0ρ
2
2(T

∗
0 T0)− V ρ22(T

∗T )‖ = ‖V0|T0|ψ(T ∗
0 T0)− V |T |ψ(T ∗T )‖

= ‖T0ψ(T
∗
0 T0)− Tψ(T ∗T )‖ � C‖T − T0‖ � 2Cδ1.

Combining (4.3) with (4.4) and using the identity ρ21+ρ22 ≡ 1, we obtain ‖S−V0‖ �
C4 δ1.

Let us assume that δ in the statement of the lemma is so small that C4δ1 < 1.
If U = S|S|−1, then, by Lemma 4.5,

(4.5) ‖U − V0‖ � ‖U − S‖+ ‖S − V0‖ � C5 δ1.

If δ is small, then the spectrum of S∗S lies in a small neighborhood of 1. Hence
the operator |S|−1 can be expressed as a smooth function of S∗S supported on
a small interval containing 1. As ‖[P, S]‖ � C1 δ1, we have ‖[P, |S|−1]‖ � C6 δ1.
These two estimates imply (u4).
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Let Gt = (1 − t)V0 + tU . If C5 δ < 1
3 , then, in view of (4.5), ‖[P,Gt]‖ < 2

3 and

‖G−1
t ‖ < 3

2 for all t ∈ [0, 1]. Applying Lemma 4.4, we obtain (u1).
Finally, we have (u2) and (u3) because [S,Πr] = 0 and ρ1(T

∗T )Πr = ρ1(T
∗T ) =

Πrρ1(T
∗T ) for all r � 1.

4.2. Proof of Theorem 4.2. Multiplying T by a constant, we can assume that
θ = 0 and, consequently, σ(T ) ∩ O3 ⊂ R. The proof consists of two parts.

4.2.1. Part 1. Suppose first that σ(T ) ⊂ Γ, where Γ is a closed curve of the form
(4.1) containing the line segment [−3, 3].

Denote δ1 := ‖[P, T ]‖. By Lemma 4.6, there exists a normal operator T0 ∈
GL0(A⊕A) such that σ(T0) ⊂ Γ \ {0} and ‖T −T0‖ � CΓ δ1. We have T0 = V0|T0|
with |T0| ∈ GL0(A⊕A) and a unitary V0 ∈ GL0(A⊕A).

Let ρ1, ρ2, and V be as in the proof of Theorem 4.1. Consider the operator

S = ρ1(T
∗T )(ReV0)ρ1(T

∗T ) + V ρ2(T
∗T )2.

Since ρ1(T
∗
0 T0)(ReV0)ρ1(T

∗
0 T0) = V0ρ

2
1(T

∗
0 T0), the same arguments as in the proof

of Theorem 4.1 show that

‖S − V0ρ1(T
∗
0 T0)

2 − V ρ2(T
∗T )2‖ � CΓ,1 δ1

and ‖S − V0‖ � CΓ,2δ1, where CΓ,j are constants depending only on Γ.
If U = S|S|−1, then, in the same way as in the proof of Theorem 4.1, we obtain

(u1)–(u3) and (u′4) with some constant CΓ depending only on Γ. The condition
(u′5) is fulfilled because the operator Π2SΠ2 is self-adjoint, and so is the unitary
operator U |ranΠ2

.

Remark 4.8. Note that

(a) the above proof works under the weaker assumption σ(T ) ∩O2 ⊂ (−2, 2);
(b) we only need to check that diagP (Tj − λI) ∈ GL0(A⊕A) for one point λ

lying in the domain bounded by Γ;
(c) the constructed operator U satisfies stronger the conditions (u2) and (u3),

which imply (u′2), (u
′
3).

4.2.2. Part 2. Let now σ(T ) be an arbitrary closed bounded set such that σ(T ) ∩
O3 ⊂ (−3, 3). First of all, let us note that the statement of Theorem 4.2 is local in
the following sense.

Assume that we have found a unitary Uj satisfying the conditions of Theorem
4.2 for another normal operator Tj . If

(i) the spectral projection of Tj corresponding to O2 coincides with Π2 and
TjΠ2 = TΠ2,

(ii) ‖[P, Tj ]‖ � Cj ‖[P, T ]‖ where the constant Cj does not depend on A and
T ,

(iii) diagP (Tj ± iI) ∈ GL0(A⊕A),

then (u1) and (u′2)–(u
′
5) hold for T and U = Uj .

Hence, in view of Part 1, it is sufficient to find a normal operator Tj satisfying
the conditions (i)–(iii) whose spectrum lies on a curve of the form (4.1) with λ = i.
Furthermore, in view of Remark 4.8(b), if σ(Tj) ⊂ Γ, then we have to prove the
inclusion (iii) only for diagP (Tj − iI). The construction proceeds in several steps.
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3−3 ‖T‖

σ(T )

Imz

Rez

3−3

σ(T1) ⊂ Θ

Imz

Rez

Θ
supp(g2(z)− z)

Figure 1. The spectra of T and T1 = g1(T ).

First, let us choose a function g1 ∈ C2(C) such that g1(z) = 3z/|z| for |z| � 3,
g1(z) = z for |z| � 2, and g1(z)/z > 0 for all z �= 0. Put T1 = g1(T ). Then
σ(T1) ⊂ Θ = (−3; 3)∪∂O3; see Figure 1. Clearly, T1 satisfies (i). In view of (2.1), we
also have (ii). Finally, if δ is small enough, then the paths Gt = tg1(T )+(1−t)T±iI
satisfy the assumptions of Lemma 4.4, which implies the inclusions (iii).

Let g2 be a smooth function mapping the arc of Θ between (−3 − 3i)/
√
2 and

(3− 3i)/
√
2 into the line segment [−2− 2i; 2− 2i] such that g2(z) = z outside the

lower rectangle in the right part of Figure 1. We have g2 ∈ OL(C) since it is a
smooth compactly supported perturbation of z. Let Θ2 = g2(Θ) and T2 = g2(T1),
so that σ(T2) ⊂ Θ2. For the same reasons as before, the operator T2 satisfies
(i)–(iii).

There is a function g3 ∈ OL(C) such that g3(z) = z outside the upper rectangle
of Figure 2, g(z) − z ∈ C2(C) and g3(Θ2) is a simple curve given by an equation
of the form (4.1). Note that g3 : C → C is not a diffeomorphism, as g3 maps two
arcs of Θ2 into one. Let T3 = g3(T2). The same arguments as for T1 show that T3

satisfies (ii) and diagP T3 − iI ∈ GL0(A⊕A).

3−3

2− 2i−2− 2i

Θ2 = g2(Θ)
supp(g3(z)− z)

3−3

2− 2i−2− 2i

g3(Θ2)

Figure 2. The spectra of T2 = g2(T1) and T3 = g3(T2)

Applying Part 1 to the operator T3 + 2iI, we obtain a unitary operator U3

satisfying (u1)–(u3), (u
′
4) and (u′5) with Πr being the spectral projections of T3+2iI.

Note that g2(z) ≡ z on O2(−2i) ∩ σ(T2). Therefore Πr coincide with the spectral
projections Πr(−2i) of the operator T2 corresponding to the discs Or(−2i) for all
r � 2.
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Define

T4 = (U3 − 2iI)ρ(|T2 + 2iI|) + T2(I − ρ(|T2 + 2iI|)),
where ρ is a nonincreasing C∞-function on R+ such that ρ(t) = 1 for t � 1 and
ρ(t) = 0 for t � 2. Since U3 commutes with Πr(−2i) for r � 2 and coincides with
the polar part V2 of T2 + 2iI on the range of Π2(−2i) − Π1(−2i), the operator T4

has the following block structure:

(4.6) T4 = (U3 − 2iI)Π1(−2i)⊕ T̃2

(
Π2(−2i)−Π1(−2i)

)
⊕ T2

(
I −Π2(−2i)

)
,

where T̃2 = T2 + (V2 − T2 − 2iI)ρ(|T2 + 2iI|). All operators on the right hand side
of (4.6) are normal, and their spectra do not contain the point −2i. Thus T4 is a
normal operator whose spectrum is contained in Θ2 with a part of the lower arc
removed; see Figure 3. From the construction, it is clear that T4 satisfies (i). The
estimate (ii) for T4 follows from the inclusion ρ(|z|) ∈ C2(C) and the estimate (u′4)
for the operator U3. If δ is small enough, then the path Gt = tT4 + (1 − t)T2 −
iI satisfies the assumptions of Lemma 4.4, which implies that diagP T4 − iI ∈
GL0(A⊕ A).

3−3

2− 2i−2− 2i

σ(T4) ⊂ Θ4
supp(g4(z)− z)

−1 1

Θ5 = g4(Θ4)

−1 1

Figure 3. The spectra of T4 and T5 = g4(T4).

Finally, there exists a smooth function g4 ∈ OL(C) such that g4(z) = z outside
the oval-shaped areas in Figure 3, g(z) − z ∈ C2(C), and g4(Θ4) is given by an
equation of the form (4.1). In simple words, g4 maps the remaining parts of the
lower arc into the end points of the central line segment and does not affect the rest
of Θ4, including the segment [−2; 2]. The same arguments as before show that the
operator T5 = g4(T4) satisfies (i), (ii), and diagP T5 − iI ∈ GL0(A ⊕ A) provided
that δ is sufficiently small. Since σ(T5) ⊂ g4(Θ4), this completes the proof.

Remark 4.9. If A is a von Neumann algebra, then GL0(A⊕A) = GL(A)⊕GL(A)
(see Remark 1.2). In this case we do not need to check the condition (iii) and can
simplify Part 2 by taking T5 = g(T ), where g ∈ C2(C) is an arbitrary function such
that g(σ(T )) ⊂ Θ5 and g(z) = z near the line segment [−2, 2].

Remark 4.10. Note that the constants Cj in the above proofs are determined only
by the choice of the auxiliary functions ρ, ρ1, and gj . It follows that C and δ in
Theorems 4.1 and 4.2 are independent of A and T .

5. Approximation by operators with finite spectra

The main result of this section is the following theorem.

Theorem 5.1. There exist constants δ > 0 and C > 0 such that the following is
true. If A has real rank zero and T ∈ M2(A) is a normal operator with d2(T ) < δ,
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then one can find a normal operator T0 ∈ M2(A) such that ‖T−T0‖ � 3, ‖[P, T0]‖ �
Cd2(T ), and σ(T0) ⊂ Z+ iZ.

Remark 5.2. The above theorem can be thought of as an approximation result,
since it holds with the same constants for operators T with arbitrarily large norms.
If d2(T ) is sufficiently small, then, applying Theorem 5.1 to ε−1T , we see that T
is approximated by an almost block diagonal operator εT0 with a finite spectrum
σ
(
εT0

)
⊂ εZ+ iεZ.

As was mentioned in Section 1, Theorem 5.1 is proved by removing certain
subsets from the spectrum σ(T ). Theorems 4.1 and 4.2 from Section 4 allow us to
remove discs from σ(T ) or, in other words, to cut holes in the spectrum. Note that,
for our purposes, it is important to be able to cut arbitrarily many holes in one
go. If we removed discs one by one repeatedly applying Theorems 4.1 and 4.2 as
in [12–14], then the error would accumulate and it would be difficult to effectively
control the norm of the commutators with P . The following lemma deals with this
issue, providing an estimate for ‖[P, T ′]‖ independent of the number of holes.

Lemma 5.3. There exist constants δ′ > 0 and C ′ > 0 such that the following
is true for all C∗-algebras A of real rank zero and all normal T ∈ M2(A). If
λ1, . . . , λm ∈ C is a finite collection of points such that dist(λi, λj) � 4 for i �= j
and each operator T − λjI satisfies the conditions of Theorem 4.1 or Theorem 4.2
with δ < δ′, then one can find a normal T ′ ∈ M2(A) with the following properties:

(f1) ‖T − T ′‖ � 3.
(f2) σ(T ′) ∩O1(λj) = ∅ for all j = 1, . . . ,m.
(f3) diagP (T

′ − λjI) ∈ GL0(A⊕A) for j = 1, . . . ,m.
(f4) [T ′,Πj

r] = 0 and T ′|Ran(I−
∑

j Πj
2)

= T |Ran(I−
∑

j Πj
2)

for all r ∈ [1, 2] and all

j = 1, . . . ,m, where Πj
r denote the spectral projections of T corresponding

to the discs Or(λj).
(f5) ‖[P, T ′]‖ � C ′δ.
(f6) If σ(T )∩O3(λj) lies on a straight line of the form eiθR+λj, then σ(T ′)∩

O2(λj) ⊂ eiθR+ λj.

Proof. Let Uj be the unitary operators obtained by applying Theorem 4.1 or The-
orem 4.2 to T − λjI. Let us fix a nonincreasing function ρ ∈ C∞(R+) such that
ρ(t) = 1 for 0 � t � 1 and ρ(t) = 0 for t � 2, and denote χj(z) = ρ(|z − λj |). We
claim that (f1)–(f6) hold for the operator

(5.1) T ′ =
m∑
j=1

(λjI + Uj)χ
2
j(T ) + T

{
I −

m∑
j=1

χ2
j (T )

}
.

Since the function χj(z) vanishes for |z−λj | � 2 and is equal to 1 for |z−λj | � 1,
the condition (u′2) implies that the operators in the first sum have block structure

with respect to Πj
1 and Πj

2. So do the operators in the second sum, and hence the
operator T ′. From (5.1) and (u′3) it follows that

(1) the “small” blocks T ′|RanΠj
1
are the unitaries Uj |RanΠj

1
shifted by λj ,

(2) the “large” block T ′|Ran(I−
∑

j Πj
2)

coincides with the corresponding block

of T ,
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(3) the “intermediate” blocks T ′|Ran(Πj
2−Πj

1)
are functions of T |Ran(Πj

2−Πj
1)

of

the form fj(z) = λj + (z − λj)
{
1 +

(
|z − λj |−1 − 1

)
χ2
j (z)

}
with Ran fj ⊂

O2(λj) \ O1(λj).

Thus we see that T ′ is a normal operator satisfying (f2) and (f4). By (u′5), we also
have (f6).

In view of (u′2) and (u′3), [Uj , χj(T )] = 0 and, consequently,

(5.2) T ′ − T =
m∑
j=1

χj(T )Ujχj(T ) +
m∑
j=1

χj(T ) (λjI − T )χj(T ).

Since χj have mutually disjoint supports, the norm of the first sum is bounded by
1. The second sum is a function of T whose modulus does not exceed 2. These
estimates imply (f1).

In view of (1.5), (u4), and (u′4), we have ‖[P, T ]‖ � δ and ‖[P,Uj ]‖ � Cδ for all
j with some universal constant C. Therefore, the inequality (f5) follows from (5.2)
and Lemma 2.4 with Q = P and Sj = λjI + Uj − T . Note that the constant C ′ in
(f5) depends only on C and the choice of ρ.

It remains to prove (f3). Let us fix j, denote Tj = Πj
2T

′ + (I − Πj
2)T , and

consider the path G′
t = Πj

2T
′+(I−Πj

2) ((1− t)T + tT ′) from Tj to T ′. From (1) to
(3) it follows that the operators G′

t − λjI are invertible with ‖(G′
t − λjI)

−1‖ � 1.

The inequality ‖[P,Uj ]‖ � Cδ and (5.2) imply that ‖[P,Πj
2(T − T ′)]‖ ≤ Cρ δ,

where Cρ is a constant depending only on C and ρ. Hence ‖[P,G′
t]‖ admits a

similar estimate. If δ is smaller than a constant depending only on C and ρ,
then ‖[P,G′

t]]‖−1 > 1. Thus, in view of Lemma 4.4, it is sufficient to show that
diagP (Tj − λjI) ∈ GL0(A⊕A).

If T − λjI satisfies the conditions of Theorem 4.1, then diagP Uj belongs to
GL0(A⊕A) and, in view of (1)–(3) and (u3), Uj = (Tj−λjI)|Tj−λjI|−1. Choosing
a homotopy ϕt(|Tj − λjI|) from |Tj − λjI|−1 to I with ϕt ∈ C2(R) and applying
Lemma 4.4, we see that diagP (Tj − λjI) ∈ GL0(A⊕A) provided that δ is smaller
than a constant depending only on C and the choice of ϕt and ρ.

Assume now that T − λjI satisfies the conditions of Theorem 4.2. Then the
operators e−iθUj

∣∣
RanΠj

1
and e−iθ(T − λjI)

∣∣
RanΠj

2
are self-adjoint and diagP (T −

λjI + ieiθI) ∈ GL0(A⊕A) . Consider the path

(5.3) Gt := t(Tj − λjI) + (1− t)(T − λjI + ieiθI) , t ∈ [0, 1].

Clearly, ‖[P,Gt]‖ � C ′
ρδ with a constant C ′

ρ depending only on C and ρ.

In view of (2), Gt|Ran(I−Πj
2)

= (T − λjI + (1− t)ieθI)
∣∣
Ran(I−Πj

2)
and, conse-

quently, the spectra of these restrictions are subsets of C \ O1. Since the op-
erator e−iθ (T − λjI)|Ran(Πj

2−Πj
1)

is self-adjoint, (3) implies that the spectra of

Gt|Ran(Πj
2−Πj

1)
also lie outside O1. Finally,

Re
(
e−iθ Gt|RanΠj

1

)
= (tUj + (1− t)(T − λjI))|RanΠj

1
,

Im
(
e−iθ Gt|RanΠj

1

)
= (1− t)I

because the operators e−iθUj

∣∣
RanΠj

1
and e−iθ(T − λjI)

∣∣
RanΠj

1
are self-adjoint. By

(u′5), σ
(
e−iθUj

∣∣
RanΠj

1

)
⊂ {−1; 1}. The spectrum of e−iθ(T − λjI)

∣∣
RanΠj

1
is a
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subset of [−1, 1]. These inclusions imply that σ
(
Re(e−iθ Gt|RanΠj

1
)
)

lie outside

the interval (− 1
3 ,

1
3 ) for all t > 2

3 . It follows that σ
(
Gt|RanΠj

1

)
are subsets of

C \ O1/3 for all t ∈ [0, 1].

Thus we see that ‖G−1
t ‖ � 3. Therefore, the path (5.3) satisfies the conditions

of Lemma 4.4 and, consequently, diagP (Tj −λjI) ∈ GL0(A⊕A) provided that δ is
smaller than a constant depending only on C and ρ.

Proof or Theorem 5.1. Let

G := (R+ i 6Z) ∪ (6Z+ iR) and L := (6Z+ 3) + i(6Z+ 3) .

The grid G splits the complex plane into closed squares Ωj of size 6×6 with vertices
in 6Z+ i 6Z. The lattice L is formed by the center points zj of Ωj , and G = ∪j∂Ωj .

Let us fix a nondecreasing function ψ ∈ C∞(R) such that the derivative ψ′ is
periodic with period 6 and ψ(t) = 6k for all t ∈ [6k − 5

2 , 6k + 5
2 ] and all k ∈ Z.

Define

g(z) := ψ(Re z) + i ψ(Im z) and gt(z) = (1− t)z + tg(z) .

Since g(z)− z ∈ C2(C), the functions gt are operator Lipschitz. One can easily see
that g (Ωj \ O1(zj)) ⊂ ∂Ωj and

(5.4) gt (Ωj \ O1(zj)) ⊂ Ωj \ O1(zj) , ∀t ∈ [0, 1] .

Put T1 := 6T and consider a closed square Ω with vertices in 6Z + i 6Z, which
contains σ(T1). Let us assume that d2(T1) = 6d2(T ) < δ′, apply Lemma 5.3 with
λj = zj ∈ Ω∩L to the operator T1, and denote the obtained normal operator by T ′

1.
The operators T1 and T ′

1 satisfy the conditions (f1)–(f5). In particular, ‖[P, T ′
1]‖ �

6C ′d2(T ), where C ′ is the constant from (f5), and σ(T ′
1) ⊂ C \ (∪jO1(zj)), see

Figure 4.

0

Figure 4. The spectra of T ′
1 and T2 = g(T ′

1).

Let T2 = g(T ′
1). Then σ(T2) ⊂ G and, since g is operator Lipschitz, ‖[P, T2]‖ �

Cψ d2(T ) with a constant Cψ depending only on C ′ and the choice of ψ. If d2(T ) <

C−1
ψ , then, in view of (5.4), the paths gt(T

′
1)− zjI satisfy the conditions of Lemma

4.4. Hence diagP (T2−zjI) ∈ GL0(A⊕A) for all zj ∈ Ω∩L. Now, applying Lemma
4.4 to the paths T2 − (tz + (1− t)zj)I, we see that diagP (T2 − zI) ∈ GL0(A⊕A)
whenever dist(z,G) � 1.

Let now λj be the points of the union (L + 3) ∪ (L + 3i) lying in Ω (in other
words, λj are the middle points of the line segments forming the squares Ωj). If
d2(T ) is smaller than a constant depending only on the choice of ψ, then, by the
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above, the operators T2 − λjI satisfy the conditions of Theorem 4.2. Let us apply
Lemma 5.3 to the operator T2 and denote the obtained normal operator by T ′

2. The
spectrum σ(T ′

2) is also a subset of G, but now it does not contain central parts of
the edges of Ωj ; see Figure 5. By (f5), we have ‖[P, T ′

2]‖ � C ′
ψ d2(T ) with a constant

C ′
ψ depending only on C ′ and ψ.

Figure 5. The spectra of T2 and T ′
2.

The spectrum of T ′
2 lies in the squares Ω′

k with edges of length 5 centered at the
points z′k ∈ 6Z+ i 6Z. On each of these squares the function g is identically equal
to z′k. Thus the spectrum of g(T ′

2) is a finite subset of 6Z+ i 6Z. Let T0 = 1
6 g(T

′
2).

Then σ(T0) ⊂ Z + iZ. Since g is operator Lipschitz, ‖[P, T0]‖ ≤ C d2(T ) with a
constant C depending only on C ′ in (f5) and the choice ψ. Finally, the estimates

(f1) and |g(z)− z| � 3
√
2 imply that ‖T − T0‖ � 3.

6. Proofs of Theorem 1.1 and Corollary 1.4

6.1. The upper bound (1.1). Denote d′1(A) := d1(A) + ‖[A,A∗]‖1/2. Applying
Theorem 3.1 to the operator A, we find normal operators N ∈ A and T ∈ M2(A)
such that

(6.1) d2(T ) � C1 d
′
1(A) and ‖T −A⊕N‖ � C1 d

′
1(A).

Here and further on, C with a subscript denotes a constant independent of A and
A.

Assume that C1 d
′
1(A) is smaller than the constant δ in Theorem 5.1. Let T0 be

the normal operator with σ(T0) ⊂ Z+ iZ given by that theorem, and let PT0P =
X + iY where X,Y are self-adjoint. We have ‖T −T0‖ � 3 and, in view of the first
estimate (6.1), ‖T0−diagP T0‖ = ‖[P, T0]‖ � C2 d

′
1(A). These two inequalities, the

second estimate (6.1) and the identity

2i [X,Y ] = [PT ∗
0 P, PT0P ] = PT ∗

0 (I − P )T0P − PT0(I − P )T ∗
0 P

imply that

(6.2) ‖X + iY −A‖ � 3 + C1 d
′
1(A) and ‖[X,Y ]‖ ≤ C3 (d

′
1(A))

2
.

Assume also that d′1(A) � (3C2)
−1, so that ‖T0 − diagP T0‖ � 1

3 . Since X is a
block of Re(diagP T0) and σ(ReT0) ⊂ Z, it follows that

(6.3) σ(X) ⊂ σ(Re(diagP T0)) ⊂ O1/3(Z) ∩ R ,

where O1/3(Z) is the closed 1
3 -neighborhood of Z.
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Let ρ be a function satisfying the conditions of Lemma 2.5 such that ρ(t) = 1 for
|t| � 1

3 and ρ(t) = 0 for |t| � 2
3 . If ρn(t) := ρ(t−n) and Y ′ =

∑
n∈Z

ρn(X)Y ρn(X),
then, by (d3),

(6.4) ‖Y − Y ′‖ � Cρ ‖[X,Y ]‖ � Cρ C3 (d
′
1(A))

2
.

In view of (6.3), ρn(X) coincides with the spectral projections of X correspond-
ing to the intervals [n − 1

3 , n + 1
3 ]. If X ′ :=

∑
n∈Z

n ρn(X), then [X ′, Y ′] = 0. It
follows that X ′ + iY ′ is a normal operator whose spectrum lies on vertical line
segments passing through real integers.

Since A has real rank zero, X ′ + iY ′ belongs to the closure of Nf (A). Now the
estimates (6.2), (6.4), and ‖X −X ′‖ � 1

3 imply that

(6.5) dist(A,Nf (A)) � 4 + C1 d
′
1(A) + Cρ C3 (d

′
1(A))

2

whenever d′1(A) � ε , where ε is a constant depending only on the constants δ and
C in Theorems 3.1 and 5.1. For every A ∈ A, the operator ε (d′1(A))−1A satisfies
the above condition. Substituting it into (6.5), we arrive at (1.1).

6.2. The lower bound (1.2). Denote d := dist(A,Nf(A)), and let Nε ∈ Nf (A)
be a normal operator with a finite spectrum such that ‖A − Nε‖ � d + ε. If
Rε = A − Nε, then [A,A∗] = [Rε, A

∗] + [A,R∗
ε ] − [Rε, R

∗
ε ] and, consequently,

‖[A,A∗]‖ � 4‖A‖ (d + ε) + (d + ε)2. Since d � ‖A‖, letting ε → 0, we obtain

‖[A,A∗]‖ � 5‖A‖ d. Now (1.2) follows from the inclusion Nf (A) ⊂ GL0(A) (see
Remark 1.3).

6.3. Proof of Corollary 1.4. Let F be a continuous nondecreasing function on
R+ such that F (0) = 0 and 0 � F � 1. If

dist (A,N(A)) � F
(
‖[A,A∗]‖

)
for any C∗-algebra A of real rank zero and all A ∈ A with d1(A) = 0 and ‖A‖ � 1,
then, according to [12, Theorem 3.8], for every ε > 0 and each A ∈ B(H) satisfying
the conditions d1(A) = 0, ‖A‖ � 1, there exists a normal operator Aε ∈ B(H)
such that

(6.6)
‖A−Aε‖ess � 2F

(
‖[A∗, A]‖ess

)
,

‖A−Aε‖ � 5F
(
‖[A∗, A]‖

)
+ 3F

(
2F

(
‖[A∗, A]‖ess

))
+ ε .

Since dist (A,N(A)) � ‖A‖, the estimate (1.1) implies that the function F (t) =
min{Ct1/2, 1} satisfies the above conditions. Applying (6.6) with this F and ε =
‖A‖−1‖[A,A∗]‖1/2 to the operator ‖A‖−1A, we obtain (1.4).

Remark 6.1. If ‖(A − λI)−1‖ < (dist(λ,Ω)− ε)−1 whenever dist(λ,Ω) > ε and
‖[A∗, A]‖1/2 � ε, then the spectrum of the normal operator A′ given by Corollary
1.4 lies in a Cε-neighborhood of Ω. Therefore it can be approximated by a normal
operator with a spectrum in Ω.
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