Exact Lagrangian immersions with a single double point
HTML articles powered by AMS MathViewer
- by Tobias Ekholm and Ivan Smith;
- J. Amer. Math. Soc. 29 (2016), 1-59
- DOI: https://doi.org/10.1090/S0894-0347-2015-00825-6
- Published electronically: January 9, 2015
- PDF | Request permission
Abstract:
We show that if a closed orientable $2k$-manifold $K$, $k>2$, with Euler characteristic $\chi (K)\ne -2$ admits an exact Lagrangian immersion into $\mathbb {C}^{2k}$ with one transverse double point and no other self-intersections, then $K$ is diffeomorphic to the sphere. The proof combines Floer homological arguments with a detailed study of moduli spaces of holomorphic disks with boundary in a monotone Lagrangian submanifold obtained by Lagrange surgery on $K$.References
- Mohammed Abouzaid, Framed bordism and Lagrangian embeddings of exotic spheres, Ann. of Math. (2) 175 (2012), no. 1, 71–185. MR 2874640, DOI 10.4007/annals.2012.175.1.4
- V. I. Arnol′d, The first steps of symplectic topology, Uspekhi Mat. Nauk 41 (1986), no. 6(252), 3–18, 229 (Russian). MR 890489
- M. F. Atiyah and F. Hirzebruch, Bott periodicity and the parallelizability of the spheres, Proc. Cambridge Philos. Soc. 57 (1961), 223–226. MR 126282, DOI 10.1017/s0305004100035088
- Frédéric Bourgeois, Tobias Ekholm, and Yasha Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012), no. 1, 301–389. With an appendix by Sheel Ganatra and Maksim Maydanskiy. MR 2916289, DOI 10.2140/gt.2012.16.301
- Jean Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173 (French). MR 292089
- Mihai Damian, Floer homology on the universal cover, Audin’s conjecture and other constraints on Lagrangian submanifolds, Comment. Math. Helv. 87 (2012), no. 2, 433–462. MR 2914855, DOI 10.4171/CMH/259
- S. K. Donaldson, Connections, cohomology and the intersection forms of $4$-manifolds, J. Differential Geom. 24 (1986), no. 3, 275–341. MR 868974, DOI 10.4310/jdg/1214440551
- Yakov Eliashberg and Emmy Murphy, Lagrangian caps, Geom. Funct. Anal. 23 (2013), no. 5, 1483–1514. MR 3102911, DOI 10.1007/s00039-013-0239-2
- Tobias Ekholm, Yakov Eliashberg, Emmy Murphy, and Ivan Smith, Constructing exact Lagrangian immersions with few double points, Geom. Funct. Anal. 23 (2013), no. 6, 1772–1803. MR 3132903, DOI 10.1007/s00039-013-0243-6
- Tobias Ekholm, Double points of exact Lagrangian immersions and Legendrian contact homology, Floer homology, gauge theory, and low-dimensional topology, Clay Math. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 2006, pp. 181–191. MR 2249253
- Tobias Ekholm, Morse flow trees and Legendrian contact homology in 1-jet spaces, Geom. Topol. 11 (2007), 1083–1224. MR 2326943, DOI 10.2140/gt.2007.11.1083
- Tobias Ekholm, John B. Etnyre, and Joshua M. Sabloff, A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009), no. 1, 1–75. MR 2560107, DOI 10.1215/00127094-2009-046
- Tobias Ekholm, John Etnyre, and Michael Sullivan, The contact homology of Legendrian submanifolds in ${\Bbb R}^{2n+1}$, J. Differential Geom. 71 (2005), no. 2, 177–305. MR 2197142
- Tobias Ekholm, John Etnyre, and Michael Sullivan, Non-isotopic Legendrian submanifolds in $\Bbb R^{2n+1}$, J. Differential Geom. 71 (2005), no. 1, 85–128. MR 2191769
- Tobias Ekholm, John Etnyre, and Michael Sullivan, Legendrian contact homology in $P\times \Bbb R$, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3301–3335. MR 2299457, DOI 10.1090/S0002-9947-07-04337-1
- Tobias Ekholm, John Etnyre, and Michael Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005), no. 5, 453–532. MR 2141318, DOI 10.1142/S0129167X05002941
- Tobias Ekholm and Ivan Smith, Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014), no. 1-2, 195–240. MR 3157996, DOI 10.1007/s00208-013-0958-6
- Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. MR 965228
- A. Floer, Monopoles on asymptotically flat manifolds, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 3–41. MR 1362821
- Michael Frame, On the inertia groups of fibre bundles, Proc. Amer. Math. Soc. 85 (1982), no. 2, 289–292. MR 652460, DOI 10.1090/S0002-9939-1982-0652460-8
- K. Fukaya, Y.-G. Oh, K. Ohta, and K. Ono, Lagrangian intersection Floer theory—Anomaly and obstruction, I & II., AMS Studies in Advanced Mathematics, vol. 46, International Press, Boston, 2009.
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2
- Helmut Hofer, Krzysztof Wysocki, and Eduard Zehnder, A general Fredholm theory. II. Implicit function theorems, Geom. Funct. Anal. 19 (2009), no. 1, 206–293. MR 2507223, DOI 10.1007/s00039-009-0715-x
- J. F. P. Hudson, Concordance, isotopy, and diffeotopy, Ann. of Math. (2) 91 (1970), 425–448. MR 259920, DOI 10.2307/1970632
- J. F. P. Hudson and E. C. Zeeman, On combinatorial isotopy, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 69–94. MR 163318, DOI 10.1007/BF02684797
- Michel A. Kervaire, A note on obstructions and characteristic classes, Amer. J. Math. 81 (1959), 773–784. MR 107863, DOI 10.2307/2372928
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- Thomas Kragh, Parametrized ring-spectra and the nearby Lagrangian conjecture, Geom. Topol. 17 (2013), no. 2, 639–731. With an appendix by Mohammed Abouzaid. MR 3070514, DOI 10.2140/gt.2013.17.639
- Daesung Kwon and Yong-Geun Oh, Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition, Comm. Anal. Geom. 8 (2000), no. 1, 31–82. Appendix 1 by Jean-Pierre Rosay. MR 1730896, DOI 10.4310/CAG.2000.v8.n1.a2
- L. Lazzarini, Existence of a somewhere injective pseudo-holomorphic disc, Geom. Funct. Anal. 10 (2000), no. 4, 829–862. MR 1791142, DOI 10.1007/PL00001640
- Y.-P. Lee, Quantum $K$-theory. I. Foundations, Duke Math. J. 121 (2004), no. 3, 389–424. MR 2040281, DOI 10.1215/S0012-7094-04-12131-1
- Dusa McDuff, Examples of symplectic structures, Invent. Math. 89 (1987), no. 1, 13–36. MR 892186, DOI 10.1007/BF01404672
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
- Yong-Geun Oh, Gromov-Floer theory and disjunction energy of compact Lagrangian embeddings, Math. Res. Lett. 4 (1997), no. 6, 895–905. MR 1492128, DOI 10.4310/MRL.1997.v4.n6.a9
- Yong-Geun Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), no. 7, 949–993. MR 1223659, DOI 10.1002/cpa.3160460702
- Yong-Geun Oh, Fredholm theory of holomorphic discs under the perturbation of boundary conditions, Math. Z. 222 (1996), no. 3, 505–520. MR 1400206, DOI 10.1007/PL00004544
- A. V. Pazhitnov, On the sharpness of inequalities of Novikov type for manifolds with a free abelian fundamental group, Mat. Sb. 180 (1989), no. 11, 1486–1523, 1584 (Russian); English transl., Math. USSR-Sb. 68 (1991), no. 2, 351–389. MR 1034426, DOI 10.1070/SM1991v068n02ABEH001933
- L. Polterovich, The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991), no. 2, 198–210. MR 1097259, DOI 10.1007/BF01896378
- Reinhard E. Schultz, Smooth structures on $S^{p}\times S^{q}$, Ann. of Math. (2) 90 (1969), 187–198. MR 250321, DOI 10.2307/1970687
- Reinhard Schultz, On the inertia group of a product of spheres, Trans. Amer. Math. Soc. 156 (1971), 137–153. MR 275453, DOI 10.1090/S0002-9947-1971-0275453-9
- Paul Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), no. 1, 103–149 (English, with English and French summaries). MR 1765826, DOI 10.24033/bsmf.2365
- Stephen Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327–344. MR 105117, DOI 10.2307/1970186
- Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391–406. MR 137124, DOI 10.2307/1970239
Bibliographic Information
- Tobias Ekholm
- Affiliation: Department of Mathematics, Uppsala University, Box 480, Uppsala 751 06, Sweden; and Institut Mittag-Leffler, Aurav. 17, Djursholm 182 60, Sweden
- MR Author ID: 641675
- Email: tobias.ekholm@math.uu.se
- Ivan Smith
- Affiliation: Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
- MR Author ID: 650668
- Email: is200@cam.ac.uk
- Received by editor(s): November 25, 2011
- Received by editor(s) in revised form: July 11, 2014, and September 6, 2014
- Published electronically: January 9, 2015
- Additional Notes: The first author was partially supported by the Knut and Alice Wallenberg Foundation, as a Wallenberg Scholar.
The second author was partially supported by European Research Council grant ERC-2007-StG-205349. - © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 1-59
- MSC (2010): Primary 53D35, 53D40, 14J70; Secondary 14N05
- DOI: https://doi.org/10.1090/S0894-0347-2015-00825-6
- MathSciNet review: 3402693