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MAXIMAL VARIETIES AND THE LOCAL LANGLANDS

CORRESPONDENCE FOR GL(n)

MITYA BOYARCHENKO AND JARED WEINSTEIN

Introduction

Let K be a nonarchimedean local field with ring of integers OK and residue
field Fq, and let n ≥ 1 be an integer. The local Langlands correspondence and
the Jacquet-Langlands correspondence for GLn(K) are both realized in the �-adic
cohomology of the Lubin-Tate tower MH0,∞ = lim←−MH0,m, where MH0,m is the
rigid analytic space parametrizing deformations of a fixed one-dimensional formal
OK-module H0 of height n over Fq together with a Drinfeld level m structure. (For
the precise statement, see the introduction to [11].) At present, this fact can only
be proved using global methods. A program initiated by the second author in [21]
and [22] aims to obtain a purely local proof by first constructing a sufficiently nice
formal model of MH0,m, and then computing the cohomology of MH0,∞ using the
nearby cycles complex on the special fiber of this model.

This idea has roots in the work of Yoshida [23], who found a formal model
for MH0,1 whose special fiber contains a certain Deligne-Lusztig variety for the
group GLn over k. Using this model, Yoshida showed by purely local methods that
the local Langlands correspondence for depth zero supercuspidal representations
of GLn(K) is realized in the cohomology of MH0,1. Our work is concerned with
a large class of supercuspidals of positive depth. Instead of working with any
particular layer MH0,m of the tower, we work directly with MH0,∞, which carries
the structure of a perfectoid space (see [22] or [19] for the case of general Rapoport-
Zink spaces). Let C be the completion of an algebraic closure of K, and let WK be
the Weil group of K. Then MH0,∞,C admits an action of GLn(K) × D× × WK ,
where D/K is the central division algebra of invariant 1/n. The following theorem
does not require any global methods.

Theorem A. Let m ≥ 1 be an integer. There exists a formal scheme V over
Spf OC admitting an action of GLn(K) × D× × WK whose generic fiber is an
open subset of MH0,∞,C , and whose special fiber V has the following property. For

every irreducible admissible representation π of GLn(K) with Q� coefficients, the
following are equivalent:

(1) HomGLn(K)

(
π,Hn−1

c (V,Q�)
)
�= 0.

(2) Up to twisting by a one-dimensional character, the Weil parameter of π
takes the form IndL/K θ, where L/K is the unramified extension of degree
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n, and θ : L× → Q
×
� is a character of conductor m + 1, whose conductor

cannot be lowered through twisting by a character of the form χ ◦ NL/L′ ,

where L′ ⊂ L is a proper subextension and NL/L′ : L× → (L′)× is the norm
map. (This condition implies that π is supercuspidal.)

If these conditions hold, then we have a D× ×WK-linear isomorphism

HomGLn(K)

(
π,Hn−1

c (V,Q�)
) �−→ π̌′ ⊗ σ�(π),

where π′ corresponds to π under the local Jacquet-Langlands correspondence, π̌′ is
the contragredient of π′ and π 	→ σ�(π) is a certain normalization (see Theorem C
in Section 7.5) of the local Langlands correspondence.

In other words, the degree n − 1 cohomology of the Fq-scheme V manifests the
Jacquet-Langlands and local Langlands correspondences in its middle cohomology
for all supercuspidals of the type described in the theorem. V is not of finite type,
but it is closely related to a smooth affine variety X over Fqn of dimension n − 1.

To wit, V is isomorphic to the inverse limit of a tower of schemes, each of which is
isomorphic to a disjoint union of copies of the perfection of X⊗Fq. (The perfection
of a scheme in characteristic p is the inverse limit of the scheme under the absolute
Frobenius endomorphism.)

The variety X is rather interesting in its own right. It is derived from a certain
unipotent group U over Fqn in a manner which resembles certain constructions of
Deligne-Lusztig in the context of reductive groups over finite fields (see, e.g., [8,
Definition 1.17(ii)]). In fact X is the preimage under the Lang map x 	→ Frqn(x)x

−1

of a certain subvariety Y ⊂ U. (Here Frqn is the qnth power Frobenius map. See
Section 3.4 for the definitions of U and Y .) Then X admits an action of U(Fqn)
by right multiplication. In the course of proving Theorem A we give a complete
description of the �-adic cohomology of X. The theorem below gives a summary of
our results.

Theorem B. As a representation of U(Fqn), the space
⊕

i≥0 H
i
c(X ⊗ Fq,Q�) de-

composes into a direct sum of irreducible representations, each occurring with mul-
tiplicity one. Furthermore, for each i, Frqn acts on Hi

c(X ⊗ Fq,Q�) as the scalar

(−1)iqni/2.

We remark that in the context of the theorem, if qni/2 is not an integer, then
Hi

c(X⊗Fq,Q�) = 0. A more precise version of Theorem B is Theorem 4.5.1, whose
proof occupies Part 2 of the article.

The scalar (−1)iqni/2 is significant because it implies that X is a maximal variety
in the following sense. Let S be any scheme of finite type over a finite field FQ.
It follows from [7, Theorem 3.3.1], that for each i and every eigenvalue α of FrQ
acting on Hi

c(S,Q�), there exists an integer m ≤ i such that all complex conjugates
of α have absolute value Qm/2. So the Grothendieck-Lefschetz trace formula

#S(FQ) =
∑
i∈Z

(−1)i tr
(
FrQ, H

i
c(S,Q�)

)
implies the following bound on the number of rational points of S:

#S(FQ) ≤
∑
i∈Z

Qi/2 dimHi
c(S,Q�).
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This bound is achieved if and only if FrQ acts on Hi
c(S,Q�) via the scalar (−1)iQi/2

for each i, in which case the scheme S is called maximal. (There are plenty of
references in the literature to “maximal curves” over finite fields: these are smooth
projective curves which attain the Hasse-Weil bound on the number of rational
points. As far as we know, our definition of maximality for arbitrary schemes over
a finite field is new.) Theorem B implies that X is a maximal variety over Fqn .
We remark that if n = 2, then X is a disjoint union of q copies of the “Hermitian
curve” yq + y = xq+1, which has long been known to be maximal over Fq2 .

1. Outline of the paper

Part 1 investigates the geometry of MH0,∞, the Lubin-Tate space at the infinite
level. While this is too large to be a rigid space, it is possible to formulate MH0,∞
as a moduli problem on the category of adic spaces (Definition 2.10.1) which turns
out to be representable. In Section 2 we review a result from [22] which furnishes a
linear-algebra description of MH0,∞. We begin with the formal OK-module H0/Fq

of dimension 1 and height n. Let H be any lift of H0 to OK̆ , where K̆ is the
completion of the maximal unramified extension of K. We consider the “universal

cover” H̃ = lim←−H (inverse limit with respect to multiplication by a uniformizer

of K) as a K-vector space object in the category of formal schemes over OK̆ .

Then H̃ does not depend on the choice of lift H, and as a formal scheme we have

H̃ ∼= Spf OK̆�T 1/q∞�. The generic fiber H̃η of H̃ is a “perfectoid open ball” over

K̆. The level structure on the universal deformation of H0 over MH0,∞ induces

a morphism MH0,∞ → H̃n
η . Then Theorem 2.10.5 shows that MH0,∞ is equal

to the locally closed subspace of H̃n
η cut out by a certain explicit determinant

condition. If C is the completion of an algebraic closure of K, then the base change
MH0,∞,C is a perfectoid space admitting an action of the triple product group
GLn(K)×D× ×WK .

In Section 3, we construct a special rational subset of MH0,∞,C which plays
a role in Theorem A. First we study the complex multiplication (CM) points of
MH0,∞ in Section 3.1. Let x ∈ MH0,∞(C) be a CM point which corresponds to
a deformation of H0 with endomorphisms by L (where L is as in Theorem A). In
Section 3.7 we identify a descending sequence of rational subsets Zx,1 ⊃ Zx,2 ⊃ · · ·
of x in MH0,∞,C . Fix x and m, and set Z = Zx,m. The main theorem of Part 1 is
Theorem 3.6.1, which shows that Z admits a formal model Z whose special fiber
Z is a profinite union of copies of the perfection of the variety X described in the
Introduction. We also compute the stabilizer J of Z in GLn(K)×D××WK , along
with its action on Z; this action is induced from an action of J on the variety X
itself. This being done, we let V be the disjoint union of copies of Z indexed by
J \(GLn(K)×D××WK). We find that the representation of GLn(K)×D××WK

onHn−1
c (V ,Q�) is (modulo a small issue involving twists) isomorphic to the induced

representation Ind
GLn(K)×D××WK

J Hn−1
c (X ⊗ Fq,Q�).

To prove Theorem A, we must therefore calculate the cohomology of X, and also
show that this induced representation realizes the local Langlands correspondences.
These are the aims of Parts 2 and 3, respectively. Part 2 is devoted to the proof of
a more precise version of Theorem B, which we state as Theorem 4.5.1. Namely, we
obtain an explicit description of the irreducible representations of the finite group
U = U(Fqn) that appear in H•

c (X ⊗ Fq,Q�). In particular, we show that for every



180 MITYA BOYARCHENKO AND JARED WEINSTEIN

character ψ of the center of U , there exists a unique irreducible representation
of U that is both a summand of H•

c (X ⊗ Fq,Q�) and has central character ψ.
Section 4 is devoted to setting up the notation for the statement and the proof of
Theorem 4.5.1. Section 5 establishes some properties of the “reduced norm map”
U → Ga, which is a geometric version of the reduced norm map D× → K× and of
the usual determinant GLn(K) → K×.

The heart of the proof of the main theorem is in Section 6. A step-by-step out-
line of the argument can be found in Section 6.1. Since the proof of Theorem 4.5.1
is somewhat long and complicated, let us summarize the key underlying ideas.
First, using the definition of X, it is not hard to show that for every representation
ρ of U over Q�, the “ρ-isotypic component” of H•

c (X ⊗ Fq,Q�) can be naturally

identified with H•
c (Y ⊗ Fq, Eρ), where Eρ is the local system on U associated to

ρ (see Corollary 6.7.2). One then reduces the proof of Theorem 4.5.1 to the cal-
culation of H•

c (Y ⊗ Fq, Eρ) for certain representations ρ that can be induced from
one-dimensional representations of groups of Fqn -points of connected subgroups of

U. Using the methods of [2, Section 2], one identifies H•
c (Y ⊗ Fq, Eρ) with the

cohomology of certain rank 1 local systems on affine spaces. Finally, the latter
turn out to be amenable to an inductive calculation using certain linear fibrations
of affine spaces Ad −→ Ad−1, the proper base change theorem and the projection
formula.

Finally, Part 3 connects the first two parts by using Theorem B to prove The-
orem A. We note that Theorem A is concerned with the Lubin-Tate tower of K
and certain special cases of the local Langlands and Jacquet-Langlands correspon-
dences, while Theorem B is only concerned with the action of the finite group
U = U(Fqn) on the cohomology of the variety X over a finite field, which on the
surface is unrelated to the local Langlands correspondence. A bridge between the
two results is provided by Theorem C (Section 7.5), in which we prove that the in-

duced representation Ind
GLn(K)×D××WK

J Hn−1
c (X ⊗Fq,Q�) realizes certain special

cases of the local Langlands and Jacquet-Langlands correspondences. Theorem C
is proved in Section 8; we make heavy use of the methods developed by Henniart
in [12, 13], along with Theorem B. The article concludes with Section 9, where we
prove Theorem A by combining Theorem C with the main results of Part 1.

Part 1. Affinoids in the Lubin-Tate tower

2. The Lubin-Tate tower at infinite level

As before, let K be a nonarchimedean local field with uniformizer 
 and residue
field Fq. Let n ≥ 1, and letH0/Fq be a one-dimensional formalOK-module of height
n. Then H0 is unique up to isomorphism, and D = EndH0 ⊗ K is the central
division algebra over K of invariant 1/n. The Lubin-Tate tower is a projective
system of analytic spaces MH0,m (m ≥ 0) which parametrize deformations of H0

with the level 
m structure. In Section 2.10 we review the construction of an
analytic space MH0,∞, which is (in a sense) the inverse limit of the MH0,m. For
now let us describe only the points of MH0,∞. For a complete valued extension
field E/K, MH0,∞(E) is the set of isogeny classes of triples (H, ρ, φ), where H/OE

is a formal OK-module, ρ : H0 ⊗ OE/
 → H ⊗ OE/
 is a quasi-isogeny and
φ : Kn→̃V (H)(E) is a basis for the rational Tate module of H. The pair (H, ρ) is a
deformation of H0 to OE , whereas φ is a level structure. The group GLn(K)×D×
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acts on MH0,∞, by operating on φ and ρ, respectively. The goal of this section is
to give a precise description of MH0,∞ as an adic space, as in [22]. On the one
hand, MH0,∞ represents a moduli problem for adic spaces which generalizes the one
given in the previous paragraph. On the other hand, it turns out that MH0,∞ has
a convenient linear algebra description, which goes as follows. Let M(H0) be the
Dieudonné module of H0. Then the top exterior power ∧nM(H0) is the Dieudonné
module of a formal OK-module of height 1 and dimension 1, which we call ∧H0.

Recall that H̃ means the universal cover of any lift of H0 to OK̆ , and similarly for

∧̃H. Theorem 2.10.3 furnishes a natural K-alternating map δ : H̃n → ∧̃H (which
even has an explicit presentation; cf. the proof of Theorem 2.10.3). By classical
Lubin-Tate theory, ∧H0 has a unique lift ∧H, which shows that M∧H0,∞ may

be identified with the locally closed subspace of ∧̃Hη which parametrizes nonzero
sequences of torsion elements. Finally, Theorem 2.10.5 shows that MH0,∞ is the

preimage of M∧H0,∞ under δ : H̃n
η → ∧̃Hη.

2.1. Formal OK-modules: Definitions. We rely heavily on the notions of for-
mal OK-modules and formal OK-module laws. These are reviewed below. Let A
be an OK-algebra. A one-dimensional formal OK-module law over A is a collection
of power series H(X,Y ) ∈ A�X,Y � and [a]H(X) ∈ A�X� (a ∈ OK) satisfying the
usual constraints. The addition law H(X,Y ) will be written X +H Y , and the
entire package will simply be called H. A homomorphism f : H → H ′ between
one-dimensional formal OK-module laws over A is a power series f(X) ∈ A�X�
without a constant term for which f(X+H Y ) = f(X)+H′ f(Y ) and f([a]H(X)) =
[a]H′(f(X)). For a one-dimensional formal OK-module law H/A, the Lie alge-
bra LieH is the free A-module spanned by the symbol d/dX. A homomorphism
f : H → H ′ induces a homomorphism of A-modules LieH → LieH ′ which is simply
multiplication by f ′(0). Formal OK-module laws of higher dimension are defined
similarly; if H has dimension d, then LieH is a free A-module of rank d. It will be
useful to present a more functorial description of formal OK-module laws. For this
we need the notion of an adic ring.

Definition 2.1.1. A topological ring A is adic if there exists an ideal I ⊂ R such
that A is separated and complete for the I-adic topology. Such an I is called an
ideal of definition for A. If A is an adic ring, an adic A-algebra R is an adic ring
together with a continuous homomorphism A → R.

For an adic ring A, let AdicA be the category of adic A-algebras. We often
consider covariant functors F : AdicA → Sets. If F is representable by an adic
A-algebra R, we will often confuse F with the affine formal scheme Spf R. A
basic example is the functor R 	→ Nil(R) which assigns to an adic A-algebra R
the set of topologically nilpotent elements of R. Then Nil = Spf A�T �. Let A be
an adic OK-algebra, and let H be a d-dimensional formal OK-module law over
A. Let OK−mod be the category of OK-modules. Then H determines a functor
AdicA → OK−mod, which will also be called H. For an object R of AdicA, H(R)
is the set Nil(R)d with the OK-module structure determined by the operations
in H. The composition of H : AdicA → OK −mod with the forgetful functor
OK−mod → Sets is representable by Spf A�X1, . . . , Xd�. By a formal OK-module
over A we will mean a functor H : AdicA → OK−mod which is isomorphic to the
functor induced by some formal OK-module law. Then LieH may be defined as
the kernel of H(A[X]/X2) → H(A). An isomorphism between H and the functor
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induced by a formal OK -module law will be called a coordinate on H. A choice of
coordinate on H gives a basis for the free A-module LieH.

2.2. Formal OK-modules over Fq. These are easily classified. A one-dimensional

formal OK-module over a perfect field k containing Fq is either isomorphic to Ĝa,
or else there exists a maximal integer n ≥ 1 for which (with respect to some choice
of coordinate on H) [
]H(X) is a power series in Xqn . In the latter case, H is

-divisible, and n is the height of H. If k is assumed to be algebraically closed
(for instance, if k = Fq), then there even exists a coordinate on H for which

[
]H(X) = Xqn . If A is a local OK-algebra whose residue field k is perfect, we
will refer to the height of a formal OK-module H/A as the height of H ⊗ k (if this
exists).

2.3. Logarithms. Let A be an adic OK-algebra. For a one-dimensional formal
OK-module law H over A, we have the corresponding logarithm series logH(T ) ∈
(A ⊗ K)�T �. This is the unique power series of the form T + c2T

2 + · · · which

furnishes an isomorphism between H ⊗ (A⊗K) and the formal additive group Ĝa.
If A is OK-flat, then logH determines H. For each n ≥ 1, there is a particularly
convenient formal OK-module law H for which

logH(T ) =
∞∑
i=0

T qin


i
.

We call this H the standard formal OK-module of height n. It is obtained by setting
vn = 1 and vj = 0 (for all j �= n) in Hazewinkel’s universal p-typical formal OK-
module over OK [v1, v2, . . . ] (see [10, Section 13]). Although H has a model over

OK , we will take its base ring to be OK̆ , where K̆ is the completion of the maximal

unramified extension of K. It is easy to check that H ⊗ Fq has height n in the
sense of the previous subsection. If H is a general formal OK-module over A, then
the logarithm logH is an isomorphism between H⊗A[1/
] and the additive formal

OK-module LieH ⊗ Ĝa.

2.4. Additive extensions and the Dieudonné module. Let H be a formal
OK-module of height n over a local OK-algebra A.

Definition 2.4.1. A rigidified additive extension of H is an exact sequence 0 →
Ĝa → E → H → 0 of formal OK-modules equipped with a splitting LieH → LieE
of Lie algebras. The group of isomorphism classes of rigidified additive extensions

of H is denoted ExtRig(H, Ĝa).

To give a splitting LieH → LieE is equivalent to giving an invariant differential

ωE on E whose pullback under Ĝa → E is the canonical differential dT on Ĝa.
There is a universal additive extension (see [10, Section 11])

0 → V → E → H → 0,

with V isomorphic to (Ĝa)
n−1. Then ExtRig(H, Ĝa) is dual to LieE. Rigidi-

fied additive extensions of H can be constructed using special power series called
quasilogarithms. For a power series g(T ) ∈ (A⊗K)�T �, we let

Δg(X,Y ) = g(X +H Y )− g(X)− g(Y ),

δag(X) = g([a]H(X))− ag(X), a ∈ OK .
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Let δg denote the collection of power series {Δg, δag}. We say δg is integral if Δg
and δag lie in A�T �.

Definition 2.4.2. A quasilogarithm for H is a power series g(T ) ∈ (A ⊗ K)�T �
without a constant coefficient for which δg and dg (the derivative) are both integral.
Define the module of quasilogarithms as the A-module

QuasiLog(H) =

{
g(T ) ∈ (A⊗K)�T �

∣∣∣∣ g(0) = 0, δg and dg integral

}
{
g(T ) ∈ A�T �

∣∣∣∣ g(0) = 0

} .

If g(T ) is a quasilogarithm for H, we may define a two-dimensional formal OK-
module law E by

(X,X ′) +E (Y, Y ′) = (X + Y +Δg(X ′, Y ′), X ′ +H Y ′),

[a]E (X,X ′) = (aX + δag(X
′), X ′).

Then 0 → Ĝa → E → H → 0 is an additive extension of H. We define a differential
ωE on E by the formula

ωE = dX ′ + dg(X).

Then the pullback of ωE to Ĝa is dT , so that E and ωE define a rigidified ad-
ditive extension of H. If g(T ) lies in A�T �, then E is isomorphic to the trivial

extension Ĝa ⊕H via the isomorphism (X + g(X ′), X ′). We therefore have a map

QuasiLog(H) → ExtRig(H, Ĝa).

Proposition 2.4.3 ([10], Proposition 8.5). The map QuasiLog(H) → ExtRig

(H, Ĝa) is an isomorphism of A-modules.

For the standard formal OK-module, the quasilogarithms can be written down
explicitly.

Lemma 2.4.4 ([10], Proposition 13.8). Let H be the standard formal OK-module
law. A basis for QuasiLog(H) is given by

logH(T ),
1



logH(T q), . . . ,

1



logH(T qn−1

).

Let H0 = H⊗Fq. We will write M(H0) = ExtRig(H, Ĝa): this is the Dieudonné
module of H0. M(H0) does not depend on the choice of lift H. In general, if
A → A′ is a surjection of local OK-algebras whose kernel has OK-divided powers,

and H/A is a formal OK-module, then ExtRig(H, Ĝa) depends only on H ⊗ A′ in
a functorial sense. Lemma 2.4.4 gives a privileged basis for the rational Dieudonné
module M(H0)⊗K, corresponding to the quasilogarithms

logH(T ), logH(T q), . . . , logH(T qn−1

).

We call this the standard basis of M(H0)⊗K.

2.5. The universal cover. Let A be an adic OK-algebra, and let H be a 
-

divisible formal OK-module over A. We define the universal cover H̃ as the functor
from AdicA to K-vector spaces, defined by

H̃(R) = lim←−H(R),

where the inverse limit is taken with respect to multiplication by 
.
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Lemma 2.5.1. Let H0 be a one-dimensional 
-divisible formal OK-module over

Fq. Then H̃0 is isomorphic to Spf Fq�T
1/q∞�, where Fq�T

1/q∞� is defined as the

T -adic completion of the ring Fq[T
1/q∞ ].

Proof. SinceH0 is a
-divisible formal OK -module over an algebraically closed field
containing Fq, we may choose the coordinate on H0 in such a way that [
]H0

(T ) =

T qn , where n is the height of H0. Then for an adic Fq-algebra R we have H̃0(R) =

lim←−Nil(R), where the limit is taken with respect to the maps x 	→ xqn . Thus H̃0

is the inverse limit of the affine formal schemes lim←− Spf Fq�T � with respect to the

maps T 	→ T qn , and this is exactly Spf Fq�T
1/q∞�. �

For an adic OK-algebra A, we will use the notation Nil� for the functor:

Nil�(R) = lim←−
x�→xq

Nil(R).

This functor is representable by the formal scheme Spf A�T 1/q∞�, where A�T 1/q∞�
is the completion of A[T 1/q∞ ] with respect to the ideal generated by I and T (where
I is an ideal of definition for A).

Lemma 2.5.2. Let A be an adic Zp-algebra with an ideal of definition I. For an

adic A-algebra R, the reduction map Nil�(R) → Nil�(R/I) is a bijection.

Proof. The inverse map is as follows. We may assume that p ∈ I. Let (x0, x1, . . . )

be an element of Nil�(R/I). For i = 0, 1, . . . , let yi ∈ R be any lift of xi. Put

zi = lim
n→∞

yq
n

n+i.

Then (z0, z1, . . . ) lies in Nil�(R) and lifts (x0, x1, . . . ). �

Lemma 2.5.3. Let A be an adic OK-algebra admitting an ideal of definition I
for which A/I = Fq. Let H and H ′ be 2 one-dimensional 
-divisible formal OK-
modules over A, and let H0, H

′
0 be their reductions modulo I.

(1) For every object R of AdicA, the natural reduction map H̃(R) → H̃0(R/I)
is an isomorphism.

(2) There is an isomorphism of functors H̃
�−→ Nil� (after forgetting the K-

vector space structure on H̃). Thus H̃ is representable by Spf A�T 1/q∞�.
(3) Morphisms H0 → H ′

0 of 
-divisible formal OK-modules over A/I lift nat-

urally to morphisms H̃ → H̃ ′ over A.

Remark 2.5.4. The restriction to the case of one-dimensional formal modules is
simply for ease of notation.

Proof. Part 1 is similar to Lemma 2.5.2: if (x0, x1, . . . ) ∈ H̃0(R/I), let yi be an
arbitrary lift of xi for i ≥ 0, and then let

zi = lim
n→∞

[
n]H(yn+i).

Then (z0, z1, . . . ) is the unique lift of (x0, x1, . . . ) to H̃(R). Part 2 follows from
Lemma 2.5.2: For an adic A-algebra R, we have

H̃(R)
�−→ H̃0(R/I)

�−→ Nil�(R/I)
�−→ Nil�(R).
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For Part 3, let f0 : H0 → H ′
0 be a morphism; this induces a morphism f̃0 : H̃0 → H̃ ′

0.

The required morphism f̃ : H̃ → H̃ ′ is the composite map

H̃(R)
∼ �� H̃0(R/I)

˜f0 �� H̃ ′
0(R/I)

∼ �� H̃ ′(R).

�
2.6. Some calculations in the universal cover of the standard formal OK-

module. It will be useful to make the isomorphism H̃
�−→ Nil� explicit in the case

that H is the standard formal OK-module. It is

H̃(R) → Nil�(R)

(x1, x2, . . . ) 	→ (y, y1/q, . . . ),

where
y1/q

i

= lim
m→∞

xqmn−i

m

for i = 0, 1, . . . . We will write λ : H̃ → Nil� to refer to this isomorphism, and

λi : H̃ → Nil for its projection onto the ith component. EndH = OL is the
ring of integers in the unramified extension L/K of degree n. Indeed, if α is a
root of T qn − T in OL, then there is a corresponding endomorphism of H given
on the level of coordinates by [α]H(T ) = αT . (Note that logH αT = α logH T ,
so this does actually define an endomorphism.) On the other hand, if H0 is the
reduction of H modulo 
, then EndH0 = OD is generated over OK by OL and the
Frobenius endomorphism Π (which sends T to T q). By Lemma 2.5.3, Π lifts to an

automorphism of the universal cover H̃. We have

λi(Πx) = λi(x)
q

for x any section of H̃ and any i = 0, 1, . . . .

Lemma 2.6.1. Let H be the standard formal OK-module, and let R be a 
-torsion-
free OK̆-algebra which is complete for the 
-adic topology. We have a commutative
diagram

(x0, x1, . . . ) ∈

��

H̃(R)
λ ��

logH ���
��

��
��

��
�

Nil�(R)

����
��
��
��
��

� (y, y1/q, . . . )

��∑∞
i=0

xqni

0

�i R[1/p]
∑∞

i=−∞
yqni

�i

Proof. If the sequence (y, y1/q, . . . ) ∈ lim←−Nil(R) corresponds to (x0, x1, . . . ) ∈
H̃(R), then

x0 = lim
m→∞

[
m]H(y1/q
mn

).

Taking logarithms, we get

logH(x0) = lim
m→∞


m logH(y1/q
mn

)

= lim
m→∞

∞∑
i=0

yq
n(i−m)


i−m

=

∞∑
i=−∞

yq
ni


i

as required. �
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This calculation appears in [9, Section 7].

2.7. The quasilogarithm map. Let H0 be a one-dimensional 
-divisible formal
OK-module over Fq. Let H be any lift of H0 to OK̆ . We will describe a functorial

map of K-vector spaces qlogH : H̃(A) → M(H0) ⊗ (A ⊗ K), where A is any adic

OK̆-algebra. The universal cover H̃ does not depend on the choice of lift H, and
neither will qlogH . Let

0 → V → E → H → 0

be the universal additive extension of H, so that M(H0) = LieE. Let x ∈ H̃(A)
be represented by the sequence (x1, x2, . . . ). Lift this arbitrarily to a sequence
(y1, y2, . . . ) of elements of E(A), and then define y ∈ E(A) by

y = lim
n→∞


nyn.

Then y does not depend on the choices made, and we may define qlogH(x) =
logE(y) ∈ (LieE)⊗ (A⊗K). It will be useful to make this map explicit when H is
the standard formal OK-module. The following lemma follows from combining the
above construction with Lemma 2.6.1.

Lemma 2.7.1. Let H be the standard formal OK-module. Let A be a 
-torsion-

free adic OK̆-algebra. Let x ∈ H̃(A).

(1) With respect to the standard basis of M(H0)⊗K, the coordinates of qlogH(x)
are given by

qlogH(x) = (logH(x), logH(Πx), . . . , logH(Πn−1x)).

(2) Suppose that x ∈ H̃(A) corresponds to (y, y1/q, . . . ) ∈ lim←−Nil(A). Then

logH(Πjx) =
∑
i∈Z

yq
ni+j


i
.

2.8. Formal schemes and adic spaces. This section is a review of [19, Section
2.2]. Let L be a complete nonarchimedean local field with ring of integers O and
residue field κ. Let 
 ∈ O be any element with |
| < 1. There is a generic
fiber functor M 	→ Mη from sufficiently nice formal schemes M over O to rigid-
analytic spaces over L; see, for instance, the discussion in [4, Section 7.1]. Here
“sufficiently nice” means that M is covered by affine formal schemes Spf A, where
A is a noetherian adic O-algebra with the largest ideal of definition I such that
A/I is finitely generated over κ. A typical example is M = Spf O�T �, in which case
Mη is the one-dimensional open unit ball. In the sequel we will need to work with
formal schemes which are not locally noetherian, and so we need a more flexible
generic fiber functor. This is provided by Huber’s theory of adic spaces; cf. [15].
If A is a (not necessarily noetherian) topological O-algebra admitting a finitely
generated ideal of definition, then we have the topological space Spa(A,A), which
comes equipped with a presheaf of topological rings. As a set, Spa(A,A) consists of
those continuous valuations on A which are bounded by 1. In the theory developed
in [15], Spa(A,A) is not considered an adic space unless its structure presheaf is a
sheaf, but in [19] there is a Yoneda-style generalization of the notion of adic space
which does not require this condition. The association Spf A 	→ Spa(A,A) extends
to a fully faithful functor M 	→ Mad from formal schemes over Spf(O) which locally
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admit a finitely generated ideal of definition to adic spaces over Spa(O,O). It then
makes sense to define the adic generic fiber

Mη = Mad ⊗Spa(O,O) Spa(L,O),

an adic space over L. (This is denoted Mad
η in [19].) Let NilpO denote the category

of O-algebras in which 
 is nilpotent. A formal scheme M represents a functor
on NilpO. If M locally admits a finitely generated ideal of definition, then Mη

has a functorial interpretation as well, and it will be useful to relate the functorial
interpretations of M and Mη. Let CAffL,O denote the category of affinoid (L,O)-
algebras (R,R+) (in the sense of Huber) for which R+ is 
-adically complete.
This is given the structure of a site by declaring a cover of (R,R+) to be a family
of morphisms (R,R+) → (Ri, R

+
i ), such that (Ri, R

+
i ) = (OX(Ui),O+

X(Ui)) for a
covering of the topological space X = Spa(R,R+) by rational subsets Ui.

Proposition 2.8.1 ([19], Proposition 2.2.2). The functor Mη : CAffL,O → Sets is
the sheafification of

(R,R+) 	→ lim−→
R0⊂R+

M(R0) = lim−→
R0⊂R+

lim←−
m

M(R0/

m),

where the injective limit is over open and bounded O-subalgebras R0 ⊂ R+.

2.9. The Lubin-Tate space without level structure. Let H0/Fq be the
(unique) formal OK-module of dimension 1 and height n. Let

DefH0
: NilpOK̆

→ Sets

be the functor which assigns to A the set of isomorphism classes of pairs (H, ρ),
where H is a formal OK-module over A and

ρ : H0 ⊗Fq
A/
 → H ⊗A A/


is a quasi-isogeny. Such a pair (H, ρ) will be called a deformation of H0 to A. Then
DefH0

is representable by a formal scheme, which is isomorphic to a disjoint union
of Z copies of Spf OL̆�u1, . . . , un−1�, parametrized by the height of the quasi-isogeny
ρ. Accordingly, the generic fiber MH0

of DefH0
is a disjoint union of open balls of

dimension n− 1. By the above characterization of adic generic fibers, we have the
following moduli interpretation ofMH0

. Let (R,R+) be an object of CAffK̆,OK̆
, and

let X = Spa(R,R+). Then an element of MH0
(R,R+) corresponds to a cover of X

by open subsets Ui = Spa(Ri, R
+
i ), open and bounded OL̆-subalgebras Ri,0 ⊂ R+

i ,
and pairs (Hi, ρi) over Ri,0, satisfying the obvious compatibility condition. Such a
family of (Hi, ρi) will be collectively referred to as a deformation ofH0 over (R,R+).
In a slight abuse of notation we will refer to such a family simply as (H, ρ).

2.10. The Lubin-Tate space at infinite level. We review some recent results
from [22] and [19] concerning the moduli of p-divisible groups with infinite level
structures. Suppose as usual that H0 is a one-dimensional formal OK -module over
Fq of height n. If (R,R+) is an object of CAffK̆,OK̆

, and (H, ρ) is a deformation

of H0 to (R,R+), then (as above) (H, ρ) corresponds to a family of pairs (Hi, ρi)
defined over a covering of Spa(R,R+). For each i, we have the Tate module T (Hi) =
lim←−Hi[


m], an affine group scheme. Passing to adic generic fibers, we have for

each i an adic space T (Hi)η; these glue together to form an adic space T (H)η over
Spa(R,R+) which carries the structure of an OK -module. If x = Spa(L,L+) is
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a point of Spa(R,R+) with L algebraically closed, then T (H)ad(L,L+) is a free
OK-module of rank n.

Definition 2.10.1. Let MH0,∞ be the functor on CAffK̆-algebras which assigns to
(R,R+) the set of triples (H, ρ, φ), where (H, ρ) is a deformation of H0 to (R,R+),
and φ : On

K → T (H)adη (R,R+) is a morphism of OK -modules which is an isomor-

phism at every point x = Spa(L,L+) ∈ Spa(R,R+).

Let H be any lift of H0 to OK̆ . The main result of [19, Section 6.3] is that there
is an alternate linear-algebra description of MH0,∞, which has nothing to do with
deformations of H0. Recall from Section 2.7 that for every adic OK̆-algebra A we

have a map qlogH : H̃(A) → M(H0)⊗(A⊗K) which does not depend on the choice

of lift H. From this we get a morphism of adic spaces qlogH : H̃η → M(H0)⊗ Ga

(where Ga is to be interpreted as the adic space version of the additive group).

Theorem 2.10.2. Let (MH0,∞)′ be the functor on CAffK̆ which assigns to (R,R+)

the set of n-tuples (s1, . . . , sn) ∈ H̃ad
η (R,R+) such that the following conditions are

satisfied:

(1) The n-tuple (qlog(s1), . . . , qlog(sn)) ∈ (M(H0) ⊗ R)n is of rank exactly

n − 1. (Meaning: with respect to any choice of basis M(H0) ⊗ R
�−→ Rn,

the resulting matrix in Rn2

has rank n − 1 in the sense that all minors of
size n− 2 vanish, and that the minors of size n− 1 generate the unit ideal
of R.)

(2) For all points x of Spa(R,R+), the vectors s1(x),. . . ,sn(x) are K-linearly
independent.

Then MH0,∞ and (MH0,∞)′ are isomorphic. (In particular (MH0,∞)′ does not
depend on the choice of H.)

Let ∧H be the one-dimensional formal OK-module over OK̆ of height 1 whose
Dieudonné module is the top exterior power ∧nM(H0). This is the formal OK-
module whose logarithm is

log∧H(T ) =

∞∑
i=0

(−1)(n−1)iT
qi


i
.

Passing to the universal cover, if (x0, x1, . . . ) ∈ ∧̃H(R) corresponds to (y, y1/q, . . . ) ∈
Nil�(R), then

(2.10.1) log∧H x0 =
∞∑

i=−∞
(−1)(n−1)i y

qi


i
.

Theorem 2.10.3. There exists a K-alternating map δ : H̃n → ∧̃H, such that the
diagram

H̃n
η

δ ��

qlogH ×···×qlogH

��

∧̃Hη

log∧H

��
M(H0)

n ⊗Ga
det

�� M(∧H0)⊗Ga

commutes.
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Proof. The morphism δ is constructed using [19, Section 6.4], at least in the case of

K = Qp, using an interpretation of H̃ in terms of p-adic Hodge theory. The general
case adds no real additional complication. Alternatively, we can give an explicit
description of δ, and in any case we will need such a description for the calculations
that follow. Assume that H is the standard formal OK-module of height n. This

entails no loss of generality, since neither H̃ nor the quasilogarithm map depends

on the choice of lift. First define a morphism of formal schemes δ0 : H̃
n → ∧H as

follows. Suppose a section (s1, . . . , sn) of H̃
n is given, for which the corresponding

section of (Nil�)n is (x1, . . . , xn) (this means that the xi are topologically nilpotent
elements with distinguished qth power roots). We set

δ0(s1, . . . , sn) = (∧H)
∑

(a1,...,an)

ε(a1, . . . , an)x
qa1

1 xqa2

2 · · ·xqan

n ,

where

• the sum ranges over n-tuples (a1, . . . , an) of integers (including those which
are ≤ 0) such that a1+· · ·+an = n(n−1)/2, and such that each ai occupies
a distinct residue class modulo n,

• ε(a1, . . . , an) is the sign of the permutation i 	→ ai+1 (mod n) of the set
{0, 1, . . . , n− 1}, and

• the symbol (∧H)
∑

means that the sum is carried out using the operation
+∧H .

Then we have

log∧H(δ0(s1, . . . , sn)) =
∑

(a1,...,an)

ε(a) log∧H(xqa1

1 · · ·xqan

n )

=
∑

(a1,...,an)

ε(a)
∑
m∈Z

(−1)(n−1)mxqa1+m

1 · · ·xqan+m

n


m
,

and it is not difficult to see that this is the same as

det

(∑
m∈Z

xqmn+j

i


m

)
1≤i≤n, 0≤j≤n−1

,

which in turn equals det qlogH(s1, . . . , sn) by Lemma 2.7.1. Thus we have shown
that the diagram of adic spaces

H̃n
η

δ0 ��

qlogH

��

∧Hη

log∧H

��
M(H0)

n ⊗Ga
det

�� M(∧H0)⊗Ga

commutes. We claim that δ0 is OK-multilinear and alternating. This will follow
from the same property of det : M(H0)

n → M(∧H0). For instance, if s1, s
′
1, s2, . . . ,

sn are sections of H̃ over an affinoid algebra (R,R+), define an element

∂ = ∂(s1, s
′
1, s2, . . . , sn) ∈ (∧H)(R+)

by

∂ = δ0(s1 + s′1, s2, . . . , sn)− δ0(s1, s2, . . . , sn)− δ0(s
′
1, s2, . . . , sn).
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(Here the operations are taking place in ∧H.) Then the commutativity of the above
diagram shows that log∧H(∂) = 0. The kernel of log∧H is the torsion ∧H[
∞].

Thus the morphism of adic spaces ∂η : H̃
n+1 → (∧H)η factors through ∧H[
∞]η.

But as topological spaces, H̃n+1
η is connected and ∧H[
∞]η is discrete, so ∂η

must be constant. Since obviously ∂(0, . . . , 0) = 0, we have ∂η = 0 identically.
This implies that ∂ = 0, since ∂ can be recovered from ∂η by looking at the
induced morphism on integral global sections. A similar argument can be applied
to show that δ0(s1, . . . , sn) is OK-multilinear and alternating. We may then define

morphisms δi : H̃
n → ∧H by (for instance) δi(s1, . . . , sn) = δ0(


−is1, . . . , sn).

Then δ = (δ0, δ1, . . . ) is the required morphism H̃n → ∧̃H . �

The morphism δ : H̃n → ∧̃H corresponds to a morphism Δ: (Nil�)n → Nil�, in
such a way that the diagram

H̃n δ ��

��

∧̃H

��
(Nil�)n

Δ
�� Nil�

commutes. The morphism Δ corresponds to an element Δ(X1, . . . , Xn) of

OK̆�X
1/q∞

1 , . . . , X
1/q∞

n �, which comes equipped with a family of qth power roots.
It will be helpful to have a first-order approximation of Δ.

Lemma 2.10.4. We have

Δ(X1, . . . , Xn) ≡ det(Xqj

i )1≤i≤n, 0≤j≤n−1

modulo terms of higher degree in OK̆�X
1/q∞

1 , . . . , X
1/q∞

n �.

Proof. This follows from the explicit description of Δ given in the proof of
Theorem 2.10.3. �

The following theorem gives a complete description of the space MH0,∞ in terms
of the morphism δ.

Theorem 2.10.5 ([19], Theorem 6.4.1). There is a Cartesian diagram

MH0,∞
δ ��

��

M∧H0,∞

��
H̃n

η δ
�� ∧̃Hη.

We remark that M∧H0,∞ is the disjoint union of Z copies of the one-point space

Spa(K̂ab,O
̂Kab), where K̂ab is the completion of the maximal abelian extension of

K. Theorem 2.10.5 shows that M∧H0,∞ is a locally closed subspace of H̃n
η . Indeed,

M∧H0,∞ is the complement of {0} in the kernel of log∧H : ∧̃Hη → Lie∧H ⊗ Ga.
Since the diagram in Theorem 2.10.5 is Cartesian, M∧H0,∞ is the locus of n-tuples

(s1, . . . , sn) ∈ H̃n
η satisfying the conditions

δ(s1, . . . , sn) �= 0,

log∧H δ(s1, . . . , sn) = 0.

Therefore MH0,∞ is locally closed in H̃n
η .
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2.11. The action of GLn(K) × D× × WK . Let C be the completion of an al-
gebraic closure of K, and let MH0,∞,C be the base change of MH0,∞ to C. We
remark that MH0,∞,C is a perfectoid space in the sense of [18]. We define a right
action of GLn(K) × D× × WK on MH0,∞,C (which becomes a left action on co-
homology). The action of GLn(K) ×D× is easy enough to define in terms of the
moduli problem represented by MH0,∞ (and does not require base changing to C).
We describe this action in terms of the description of MH0,∞ in Theorem 2.10.5.

If s = (s1, . . . , sn) is a section of H̃n, and if (g, b) ∈ GLn(K) × D×, then we set
s(g,b) = (b−1s1, . . . , b

−1sn)g. This action preserves MH0,∞. We now turn to the

action of WK . First we define an action of WK on H̃n
η,C . Suppose w ∈ WK . Let

us write Φ for the Frobenius automorphism of K̆ which induces the qth power map
on the residue field. Then w is an automorphism of C which induces Φm on K̆ for
some m ∈ Z. We get a morphism of formal schemes

1⊗ w : H̃⊗̂OK̆
OC → H̃⊗̂OK̆ ,ΦmOC ,

which induces a morphism of adic spaces over C:

1⊗ w : H̃η,C → H̃
(qm)
η,C := (H̃⊗̂OK̆ ,ΦmOC)η.

On the other hand, we have the absolute Frobenius morphism of formal schemes

ϕ : H0 → H
(qm)
0 = H0 ⊗Fq,Frmq

Fq, which induces an isomorphism ϕ : H̃0 → H̃
(qm)
0 ,

which in turn induces an isomorphism of adic spaces ϕ : H̃η,C → H̃
(qm)
η,C . We define

an automorphism s 	→ sw
−1

of H̃η,C as the composition of 1 ⊗ w with Φ. This

induces an automorphism of H̃n
η,C which preserves MH0,∞,C . Note that the action

of WK on MH0,∞,C is C-semilinear, and that it commutes with the action of
GLn(K)×D×.

3. A special affinoid in the Lubin-Tate tower at infinite level

3.1. CM points. Let L/K be an extension of degree n, with uniformizer 
L and
residue field Fqd . Let C be the completion of a separable closure of L.

Definition 3.1.1. A deformation H of H0 over OC has CM by L if there exists a
K-linear isomorphism L → EndH ⊗K, whose derivative L → EndLieH ⊗K = C
agrees with the embedding L ⊂ C. Equivalently, H has CM by L if it is isogenous
to a formal OL-module (necessarily of height 1).

Note that if H has CM by L, then the Lie algebra condition ensures that the
isomorphism L → EndH ⊗K is unique. If H/OC has CM by OL, and φ is a level
structure on H, we get a triple (H, ρ, φ) defining an C-point of MH0,∞. Points
of MH0,∞ constructed in this manner will be called CM points (or points with
CM by L). Let x be a point of MH0,∞ with CM by L which corresponds to the
triple (H, ρ, φ). Then x induces embeddings i1 : L → Mn(K) and i2 : L → D,
characterized by the commutativity of the diagrams (in the isogeny category)

Kn

i1(α)

��

φ �� V H

V (α)

��
Kn

φ
�� V H
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and

H0

i2(α)

��

ρ �� H ⊗ Fq

α⊗1

��
H0 ρ

�� H ⊗ Fq

for α ∈ L. At the risk of minor confusion, from this point forward we will usually
suppress i1, i2 from the notation and instead think of L as a subfield of Mn(K)
and D. Let Δ = Δx : L → Mn(K)×D be the diagonal embedding.

Lemma 3.1.2. The group GLn(K)×D× acts transitively on the set of points with
CM by L. The stabilizer of such a point x is Δx(L

×).

Proof. If H is a formal OK-module over OC with CM by L, then EndH must be
an order L (which is possibly not the full ring of integers). We claim that H is
isogenous to a formal OK-module whose endomorphism ring is all of OL. As usual
let TH be the Tate module of H, and let V H = TH⊗OK

K. Let OL(TH) ⊂ V H be
the OL-submodule generated by TH; then A = OL(TH)/TH is a finite subgroup
of V H/TH = H[
∞] which is OL-stable. The endomorphism ring of HL = H/A
is all of OL, which proves the claim. By classical Lubin-Tate theory, any formal
OL-module over OC of height 1 is isomorphic to HL. Thus by the above claim,
if (H, ρ, φ) and (H ′, ρ′, φ′) are two points of MH0,∞ with CM by L, then there
exists an isogeny f : H → H ′. Now let g = (φ′)−n ◦ V (f) ◦ φn ∈ GLn(K), and
b = (ρ′)−1 ◦ (f ⊗ 1) ◦ ρ ∈ (EndH0 ⊗K)× = D×. Then (g, b) carries (H, ρ, φ) onto
(H ′, ρ′, φ′). If (g, b) fixes the CM point x corresponding to (H, ρ, φ), it means there
is a quasi-isogeny α : H → H which carries ρ onto ρ ◦ b and φ onto φ ◦ g. But then
α lies in EndH ⊗K = L, and then by definition i1(α) = g and i2(α) = b, which is
to say (g, b) = Δx(α). �

By Lubin-Tate theory, points of MH0,∞ with CM by L are defined over the
completion of the maximal abelian extension of L. That is, these points are
fixed by the commutator [WL,WL]. Recall that the relative Weil group WL/K

is the quotient of WK by the closure of [WL,WL]. If x has CM by L, and

w ∈ WK , then xw−1

also has CM by L, and therefore there exists a pair (g, b) ∈
GLn(K)×D× for which x(g,b) = xw−1

. Then w 	→ L×(g, b) is a well-defined injec-
tive map j = jx : WL/K → L×\(GLn(K)×D×). Recall also that there is an exact
sequence

1 �� L× recL �� WL/K
�� Gal(L/K) �� 1

corresponding to the canonical class in H2(Gal(L/K), L×) (cf. [20]).

Lemma 3.1.3. For all α ∈ L×, we have j(recL α) = L×(1, α).

Proof. This is tantamount to the statement that xrecL α = x(1,α−1), and will follow
from classical Lubin-Tate theory. By replacing x with a translate, we may assume
thatH/OC admits endomorphisms by all of OL, so thatH is a formal OL-module of
height 1. We may also assume that φmapsOn

K isomorphically onto TH. In [17], the
main theorem shows that the maximal abelian extension Lab/L is the compositum
of Lnr, the maximal unramified extension, with L∞, the field obtained by adjoining
to L the roots of [
n

L]H for all n ≥ 1. Write α = 
m
L u, with u ∈ O×

L . In the
notation of [17], the Artin symbol (α,Lab/L) restricts to the mth power of the
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(arithmetic) qnth power Frobenius Frqn on Lnr and sends a root ξ of [
n
L]H to

[u−1]H(ξ). But recL sends a uniformizer to a geometric Frobenius, so recL(α) =
(α−1, Lab/L) as elements of Wab

L . Thus for a unit u ∈ O×
L , x

recL(u) is represented

by the triple (H, ρ, φ)recL(u) = (H, ρ, φ ◦ u) = x(u,1) = x(1,u−1) as claimed. Finally,
since recL(
L) acts as geometric Frobenius on Lnr and as the identity on L∞,
we have xrecL(�L) = (H, ρ, φ)recL(�L) = (H, ρ ◦ Fr−1

qd
, φ). Since [
L]H reduces to

Frqd modulo 
L, we have xrecL(�L) = x(1,�−1
L ). This completes the proof of the

claim. �

Let N1 and N2 be the normalizers of L× in GLn(K) and D×, respectively. Then
both N1 and N2 are extensions of Gal(L/K) by L×. Let N ⊂ GLn(K) × D× be
the pullback in the diagram

N ��

��

N2

��
N1

�� Gal(L/K).

Then N is also an extension of Gal(L/K) by L×. A pair (g, b) ∈ GLn(K) × D×

belongs to N if and only if there exists σ ∈ Gal(L/K) such that for all α ∈ L× we
have g−1αg = b−1αb = ασ.

Proposition 3.1.4. The map j : WK → L×\(GLn(K) ×D×) factors through an
isomorphism of groups WL/K → L×\N .

Proof. Let w ∈ WK , and let j(w) = L×(g, b), so that xw = x(g,b)−1

. We first claim
that (g, b) ∈ N . Let σ be the image of w in Gal(L/K), and let α ∈ L× be arbitrary.
Repeatedly using the fact that the actions of GLn(K)×D× and WK on MH0,∞(C)
commute, we have by Lemma 3.1.3

x(1,b−1αb) = x(g,b)−1(1,α)(g,b)

= xw(1,α)(g,b)

= x(1,α)w(g,b)

= xrecL(α)w(g,b)

= x(g,b) recL(α)w

= xw−1 recL(α)w

= xrecL(ασ)

= x(1,ασ),

so that b−1αb = ασ. A similar calculation shows that g−1αg = ασ. Thus (g, b) ∈ N .
One sees from the calculation

xj(w)j(w′) = xw−1j(w′) = xj(w′)w−1

= x(w′)−1w−1

= x(ww′)−1

= xj(ww′)

that j factors through a group homomorphism WK → L×\N . The restriction of
this homomorphism to WL factors through Wab

L , so in fact j factors through a
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homomorphism WL/K → L×\N , which we temporarily call j̃. From the diagram

1 �� Wab
L

rec−1
L

��

�� WL/K
��

˜j

��

Gal(L/K)

=

��

�� 1

1 �� L× (1,α) �� N/L× �� Gal(L/K) �� 1

we see that j̃ : WL/K → L×\N is an isomorphism. �

Henceforth we will use the letter j for the homomorphism WK → L×\N which
induces the isomorphism WL/K → L×\N of Proposition 3.1.4. Then j is charac-
terized by the property that

(3.1.1) xj(w) = xw−1

for all w ∈ WK .

Proposition 3.1.5. Let S be the stabilizer of x in GLn(K)×D× ×WK . Then S
is the group of triples (g, b, w), where (g, b) ∈ N is a lift of j(w) ∈ L×\N .

Proof. We have already seen that these elements fix x. Suppose (g, b, w) fixes x,

so that x(g,b) = xw−1

= xj(w). Then (g, b)j(w)−1 ∈ GLn(K) ×D× fixes x, and so
must lie in the diagonally embedded L×. �

3.2. Linking orders. We continue to assume that L/K is a separable extension
of degree n and that x ∈ MH0,∞(C) is a point with CM by L. Then x determines
K-linear embeddings L ↪→ Mn(K) and L ↪→ D. As before, let Δ: L ↪→ Mn(K)×D
be the diagonal embedding. Finally, let m ≥ 0 be an integer. In this section we
define a Δ(OL)-order L = Lx,m inside of Mn(K) × D which plays an important
role in our analysis. Much of the material in this section is taken from [22, Section
3.3]. The CM point x determines a deformation H0 of H to OC , and a basis for
the free OK-module TH = lim←−H[
n](OC). We may then identify Mn(K) with

the algebra of K-linear endomorphisms of V H = TH ⊗ K. Let A ⊂ Mn(K) be
the OL-subalgebra of elements which send piLTH into piLTH for each i ∈ Z. Let

P ⊂ A be the ideal of elements which send piLTH into p
i+1
L TH for each i ∈ Z;

then P is the double-sided ideal generated by 
L. We have a K-linear pairing
Mn(K) × Mn(K) → K given by (a, b) 	→ tr(ab). With respect to this pairing we
may writeMn(K) = L⊕C1, where C1 is a left and right L-vector space of dimension
n − 1. Let pr1 : Mn(K) → L be the projection onto the first factor. Similarly, we
can write D = L⊕ C2; let pr2 : D → L be the projection onto the first factor. Let
r be the largest integer such that pr1(P

2r) ⊂ pmL , and let

P1,m =

{
a ∈ P

r

∣∣∣∣ pr1(a) ∈ p
m
L

}
,

an OL-submodule of A. By definition of r, we have P 2
1,m ⊂ P1,m, so that 1 + P1,m

is an open subgroup of A× containing 1 + pmL . We define similar structures for the
division algebra D. Let PD ⊂ OD be the maximal double-sided ideal. Let r′ be
the largest integer such that pr2(P

2r′

D ) ⊂ pmL , and let

P2,m =

{
b ∈ P

r′

D

∣∣∣∣ pr2(b) ∈ P
m
L

}
.
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Then P 2
2,m ⊂ P2,m, and 1+P2,m is an open subgroup of O×

D which contains 1+pmL .
Now we consider structures within the product Mn(K)×D. Let

L = Δ(OL) + (P1,m × P2,m).

Then L is a Δ(OL)-order in Mn(K)×D. We also define a two-sided ideal P ⊂ L
by

P = Δ(PL) + (P1,m+1 × P2,m+1).

Then R = L/P is a finite-dimensional algebra over the residue field OL/pL.

3.3. Description of the linking order in the case of L/K unramified. From
now on we impose the assumption that L/K is unramified. It will be helpful to have
a completely explicit description of L in this case. We will assume that the CM
point x corresponds to the standard formal OK-module H, which has CM by the
full ring of integers in L. This ensures that Mn(OK) ∩L = OL and OD ∩ L = OL.
Let C◦

1 = C1 ∩Mn(OK) and C◦
2 = C2 ∩ OD. Then the linking order is

L = Δ(OL) + (pmL × p
m
L ) +

(
p
�m/2�
L C◦

1 × p
�(m−1)/2�
L C◦

2

)
,

and its ideal P is

P = Δ(pL) +
(
p
m+1
L × p

m+1
L

)
+

(
p
�(m+1)/2�
L C◦

1 × p
�m/2�
L C◦

2

)
.

Lemma 3.3.1. The quotient S = L/P is an Fqn-algebra of dimension n + 1. It
admits a basis 1, e1, . . . , en. Multiplication in S is determined by the following rules:

• ei · a = aq
i · ei, a ∈ Fqn .

• If m = 1, then

eiej =

{
ei+j , i+ j ≤ n

0, i+ j > n.

• If m ≥ 2, then

eiej =

{
en, i+ j = n

0, i+ j �= n.

Proof. This is a simple calculation. We will only explain how to construct the
elements e1, . . . , en. An interesting feature is that the roles of Mn(K) and D al-
ternate based on the parity of m. Let s ∈ GLn(OK) be an element of order n in
the normalizer of L× such that conjugation by s affects the Frobenius automor-
phism of L/K. Then the OL-module C◦

1 is spanned by s, s2, . . . , sn−1. Similarly,
we have an element Π ∈ OD coming from the Frobenius endomorphism of H0; we
have that Πn = 
, conjugation by Π affects the Frobenius automorphism on L/K,
and C◦

2 is spanned over OL by Π,Π2, . . . ,Πn−1. If m is even, then ei is the image
of (
m/2si, 0) for i = 1, . . . , n − 1, and en is the image of (
m, 0). If m is odd,
then ei is the image of (0, 
(m−1)/2Πi) for i = 1, . . . , n− 1, and en is the image of
(0, 
m). �

3.4. The unipotent group U, and the variety X. Let U0 be the affine group
variety over Fq whose points over an Fq-algebra R are formal expressions 1+α1e1+
· · · + αnen, with αi ∈ R. The group operation is determined by similar rules as
in Lemma 3.3.1. (Thus U0 depends on q, n, and m, although the dependence on
m is determined by whether m = 1.) Lemma 3.3.1 shows there is an isomorphism
between U0(Fqn) and the p-Sylow subgroup of S×.
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Let Y0 ⊂ U0 be defined by the equation an = 0, so that Y0
∼= An−1

Fq
. Write

Lqn : U0 → U0 for the Lang map g 	→ Frqn(g) · g−1, where Frqn is the qn-power

Frobenius map. Put X0 = L−1
qn (Y0). Let U = U0 ⊗Fq

Fqn , X = X0 ⊗Fq
Fqn ,

and Y = Y0 ⊗Fq
Fqn . The group U = U(Fqn) acts on X by right multiplication,

and the map X → Y induced by Lqn makes X an étale U(Fqn)-torsor over Y . In

particular, we obtain an action of U on H•
c (XFq

,Q�) :=
⊕

i∈Z H
i
c(XFq

,Q�), where

XFq

def
= X ⊗Fqn

Fq = X0 ⊗Fq
Fq. We can give explicit formulas for the variety

X. If m = 1, then X/Fqn is the (n− 1)-dimensional hypersurface in the variables
a1, . . . , an with equation

det

⎛⎜⎜⎜⎜⎜⎜⎝
aq

n

1 − a1 aq
n

2 − a2 aq
n

3 − a3 · · · aq
n

n−1 − an−1 aq
n

n − an
1 aq1 aq2 · · · aqn−2 aqn−1

0 1 aq
2

1 · · · aq
2

n−3 aq
2

n−2
...

. . .
...

0 0 0 · · · 1 aq
n−1

1

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

If m ≥ 2, then the equation is

det

⎛⎜⎜⎜⎜⎜⎜⎝
aq

n

1 − a1 aq
n

2 − a2 aq
n

3 − a3 · · · aq
n

n−1 − an−1 aq
n

n − an
1 0 0 · · · 0 aqn−1

0 1 0 · · · 0 aq
2

n−2
...

. . .
...

0 0 0 · · · 1 aq
n−1

1

⎞⎟⎟⎟⎟⎟⎟⎠ = 0.

If instead we use parameters b1, . . . , bn on U defined by g−1 = 1+ b1e1+ · · ·+ bnen,
then X is defined by

(3.4.1) det

⎛⎜⎜⎜⎜⎜⎜⎝
bq

n

n − bn bq
n

n−1 − bn−1 · · · bq
n

2 − b2 bq
n

1 − b1
bq1 1 · · · 0 0

bq
2

2 bq
2

1 · · · 0 0
...

. . .
...

bq
n−1

n−1 bq
n−1

n−2 · · · bq
n−1

1 1

⎞⎟⎟⎟⎟⎟⎟⎠ = 0

if m = 1, and

(3.4.2) det

⎛⎜⎜⎜⎜⎜⎜⎝
bq

n

n − bn bq
n

n−1 − bn−1 · · · bq
n

2 − b2 bq
n

1 − b1
bq1 1 · · · 0 0

bq
2

2 0 · · · 0 0
...

. . .
...

bq
n−1

n−1 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ = 0

if m ≥ 2.

3.5. The norm morphism. Consider the map N : GLn(K)×D× → K× given
by (g, b) 	→ det(g) NrdD/K(b)−1, where NrdD/K is the reduced norm homomor-
phism. If L is the linking order from Section 3.3, then N takes the subgroup
L× ⊂ GLn(K) × D× into 1 + pmK ⊂ K× and induces a homomorphism S× →
(1 + pmK)/(1 + p

m+1
K ), where S = L/P is the quotient appearing in Lemma 3.3.1.
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In particular, we obtain a homomorphism N : U → Fq ⊂ Fqn , which is in-
variant under the conjugation action of S× on U and restricts to the trace map
TrFqn/Fq

: Fqn → Fq on the subgroup {1 + anen
∣∣ an ∈ Fqn} ∼= Fqn of U .

In Section 5 we prove that the map N can be extended to a morphism of Fqn -
varieties

(3.5.1) N : U → Ga,

which is not a homomorphism of algebraic groups, but which has the following
properties:

• N(gh) = N(g) +N(h) for g ∈ U and h ∈ U = U(Fqn).
• Let prn : U → Ga be the projection onto the final coordinate en; then
prn(Lqn(g)) = N(g)q −N(g).

The variety X constructed in Section 3.4 is not connected. Since X is defined by
prn(Lqn(g)) = 0, the second property of N shows that X is the disjoint union of
closed subvarieties with equations N(g) = a, as a runs through Fq. In other words,
we have a Cartesian diagram of affine varieties over Fqn :

X ��

��

Fq

��
U

N
�� A1

(Here Fq is to be interpreted as a disjoint union of q points.) In Remark 4.5.2 below
we will see that the fibers of X over the points of Fq are geometrically connected.

3.6. The main result of the section. Recall from Proposition 3.1.5 that the
stabilizer of x in GLn(K) × D× × WK is the group S of triples (g, b, w), where
(g, b) ∈ N is a lift of j(w) ∈ L×\N . Let J ⊂ GLn(K)×D××WK be the subgroup
generated by L× × {1} and S. The main result of the section concerns an affinoid
subset of MH0,∞,C which happens to be J -invariant. To state it precisely, we need
to pin down a certain Frobenius element. As in the proof of Lemma 3.3.1, we have
an element s ∈ GLn(K) of order n and a uniformizer Π ∈ OD, such that conjugation
by the pair (s,Π) affects the Frobenius automorphism on Δ(L×). Thus (s,Π) ∈ N .
By Proposition 3.1.4, there exists an element Φ ∈ WK for which j(Φ) = L×(s,Π).
Note that Φ is an arithmetic Frobenius element, and (s,Π,Φ) ∈ S. Then J is
generated by the following subgroups and elements:

(1) The pro-p-Sylow subgroup of L×, this being the preimage of the group
U = U(Fqn) under the reduction map L× → (L/P)×;

(2) (α, α, 1), where α ∈ O×
L ;

(3) (1, α, recL(α)), where α ∈ L×; and
(4) (s,Π,Φ).

Consider the map

χ : GLn(K)×D× ×WK → K×

(g, b, w) 	→ (det g)(NrdD/K(b))−1 rec−1
K (w)−1.

We have χ(J ) = 1 + pmK . The remainder of the section is devoted to the following
theorem.
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Theorem 3.6.1. There exists a J -invariant rational subset Z ⊂ MH0,∞,C ad-

mitting a formal model Z whose special fiber Z is characterized by the following
Cartesian diagram of affine schemes over Fq:

Z ��

��

1 + pmK

��
Xperf

Fq N
�� Fq

Here 1 + pmK is to be interpreted as the affine scheme SpecCont(1 + pmK ,Fq), and

similarly with Fq
�−→ (1 + pmK)/(1+ p

m+1
K ). The group J acts on all objects in this

diagram. We describe first the action of J on Xperf

Fq
. The action of the pro-p-Sylow

subgroup of L× × {1} factors through the right multiplication action of U on X. If
α ∈ O×

L , then (α, α, 1) acts through

(a1, . . . , an) 	→ (αq−1a1, . . . , α
qn−1−1an−1, an),

where α is the image of α in OL/(
) = Fqn . Elements of S of the form (1, α,

recL(α)) with α ∈ L× act trivially. Finally, (s,Π,Φ) acts on Xperf

Fq
as the inverse

of the arithmetic Frobenius map (the variables are fixed but scalars get raised to
the 1/qth power). The action of J on 1 + pmK is through χ : J → 1 + pmK , and

similarly for the quotient Fq ≈ (1+ pmK)/(1+ p
m+1
K ). All arrows in the diagram are

equivariant for the action of J .

The following corollary reduces the study of the cohomology of Z to the study
of the cohomology of the (finite-type) variety X.

Corollary 3.6.2. As a representation of J we have

H•
c (Z,Q�) =

⊕
ψ

H•
c (XFq

,Q�)⊗ (ψ ◦ χ),

where ψ runs over characters of 1 + pmK .

Proof of Corollary 3.6.2. The description of Z in Theorem 3.6.1 shows that it is an
inverse limit of schemes of finite type:

Z = lim←−
r

Xperf

Fq
×(1+pm

K)/(1+p
m+1
K ) (1 + pmK)/(1 + p

m+r
K )

= lim←−
r

lim←−
Frq

XFq
×(1+pm

K)/(1+p
m+1
K ) (1 + pmK)/(1 + p

m+r
K ).

The transition maps in this inverse system are all affine, as are the schemes them-
selves. We claim that the formation of compactly supported Q�-cohomology com-
mutes with the limit. Indeed suppose Zi is a projective system of quasi-compact,
quasi-separated schemes, and let ji : Zi → Z ′

i be a compatible system of com-
pactifications. (This really can be arranged in our scenario, since the transition
maps are built out of Frobenius maps and projections onto a connected compo-
nent, and these both extend to the compactification.) Let Z = lim←−Zi, Z

′ = lim←−Z ′
i,

and let ui : Z
′ → Z ′

i be the projection. By [1, VII, Theorem 5.7], the natural
map lim−→H•(Z ′

i, ji!Z/�
nZ) → H•(Z ′, lim−→u∗

i ji!Z/�
nZ) is an isomorphism. But each

u∗
i ji!Z/�

nZ is just the extension by zero of Z/�nZ from the preimage of (Z ′
i\Zi) in
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Z ′; the direct limit of these sheaves is just j!Z/�nZ. Thus lim−→H•
c (Zi,Z/�nZ)

�−→
H•

c (Z,Z/�
nZ), which proves the claim. We find

H•
c (Z,Q�) = lim

r→∞
H•

c

(
Xperf

Fq
×(1+pm

K)/(1+p
m+1
K ) (1 + pmK)/(1 + p

m+r
K ),Q�

)
= lim

r→∞
H∗

c (X
perf

Fq
,Q�)⊗Q�[(1+pm

K)/(1+p
m+1
K )] Q�[(1 + pmK)/(1 + p

m+r
K )].

This is an isomorphism of representations of J ; recall that the action of J on 1+pmK
is through the norm map χ. The representation Q�[(1 + pK)m/(1 + p

m+r
K )] breaks

up as the direct sum of characters ψ of 1 + pmK of conductor m + r. In the direct
limit we get

H•
c (Z,Q�) =

⊕
ψ

H•
c (X

perf

Fq
,Q�)⊗ (ψ ◦ χ),

where ψ runs over characters of 1+pmK . Since the Frobenius map induces an isomor-

phism on cohomology we find a natural isomorphism H•
c (X

perf

Fq
,Q�) = H•

c (XFq
,Q�).

�

3.7. Preliminaries for the definition of the special affinoid. Let H be the
standard formal OK -module over OK̆ . Let y be a primitive element of the Tate

module TH(OC). Let (ξ, ξ
1/q, . . . ) be the corresponding element of Nil�(OC). Then

ξ is characterized by the properties

logH y =
∞∑

i=−∞

ξq
in


i
= 0, |ξ|qn−1 = |
|.

Let L/K be the unramified extension of degree n. Recall that EndH = OL.
Let α1, . . . , αn be a basis for OL/OK . Then (α1y, . . . , αny) is an n-tuple of el-

ements of H̃(OC) representing a point x ∈ MH0,∞(C) with CM by L. Let

t = δ(α1y, . . . , αny) ∈ ∧̃H(OC), so that t represents a point of M∧H0,∞(C). Sup-

pose (τ, τ1/q, . . . ) ∈ Nil�(OC) corresponds to t, so that

∞∑
i=−∞

(−1)i(n−1) τ
qi


i
= 0, |τ |q−1 = |
|.

Lemma 3.7.1. We have τ = det(αqj

i )ξ1+q+···+qn−1

plus smaller terms.

Proof. Follows from Lemma 2.10.4. �

Let ϕ be the Frobenius automorphism of L/K. Define a matrix A ∈ GLn(OK)
by

A =

⎛⎜⎜⎜⎝
α1 α2 · · · αn

αϕ
1 αϕ

2 · · · αϕ
n

...
. . .

...

αϕn−1

1 αϕn−1

2 · · · αϕn−1

n

⎞⎟⎟⎟⎠ .

Let s ∈ GLn(OK) be the matrix corresponding to the OK-linear automorphism ϕ
of OL with respect to the basis α1, . . . , αn. Then conjugation by s preserves the
subfield L ⊂ Mn(K) and acts as φ on it. Also recall the Frobenius element Π ∈ D×

from Section 2.6; conjugation by Π preserves the subfield L ⊂ D and acts as φ on
it as well.
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Lemma 3.7.2. (1) Let α ∈ L×, and let g be the image of α in GLn(K). Then

as elements of GLn(L) we have AgA−1 = diag(α, αϕ, . . . , αϕn−1

).
(2) As elements of GLn(L) we have

AsA−1 =

⎛⎜⎜⎜⎜⎜⎝
0 1

0 1
. . .

. . .

0 1
1

⎞⎟⎟⎟⎟⎟⎠ .

(3) As elements of GLn(D) we have

AΠA−1 =

⎛⎜⎜⎜⎜⎜⎝
0 1

0 1
. . .

. . .

0 1
1

⎞⎟⎟⎟⎟⎟⎠Π.

Proof. By definition of the embedding of L× into GLn(K) we have (α1, . . . , αn)g =

(αα1, . . . , ααn). Thus for i = 1, . . . , n the ith row of Ag is (αϕi

1 , . . . , αϕi

n )g =

((αα1)
ϕi

, . . . , (ααn)
ϕi

), which proves (1). Similarly, (2) and (3) follow from (α1, . . . ,
αn)s = (αϕ

1 , . . . , α
ϕ
n) and Π(α1, . . . , αn) = (αϕ

1 , . . . , α
ϕ
n)Π. �

Let R be the adic OC -algebra which represents H̃n
OC

. Thus we have n universal

elements X1, . . . , Xn ∈ H̃(R).

3.8. The special affinoid: Case of m ≥ 2 even. Define elements Y1, . . . , Yn ∈
H̃(R) by

(3.8.1) (X1, . . . , Xn) = (y +
mYn, 

m/2Y1, . . . , 


m/2Yn−1)A.

Write λ0(Yi) = ξZi, so that Zi ∈ R⊗C. Define a rational subset Y ⊂ H̃n
η,C by the

conditions

|Zi| ≤ 1, i = 1, 2, . . . , n.

Then Y = Spa(S, S+) is the generic fiber of a formal scheme Y = Spf S+, where

S+ = OC

〈
Z

1/q∞

1 , . . . , Z1/q∞

n

〉
.

The special fiber of Y is SpecFq[Z
1/q∞

1 , . . . , Z
1/q∞

n ] = An,perf

Fq
, which is to say it is

the perfection of affine n-space over Fq.

Theorem 3.8.1. Let ∧Y ⊂ ∧H̃η,C be the image of Y under δ. The morphism
δ : Y → ∧Y extends to a morphism of formal schemes Y → ∧Y whose special fiber
fits into a diagram

Y ��

∼
��

∧Y

∼
��

Uperf

Fq N
�� A1,perf

Fq
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in which the vertical arrows are isomorphisms, and the lower horizontal map is in-
duced from the morphism N : U → A1 of Equation (3.5.1). This diagram commutes
up to sign.

Proof. By Proposition 2.10.3, the morphism δ : H̃n → ∧̃H is characterized by the
property that log∧H δ(X1, . . . , Xn) = det qlogH(X1, . . . , Xn). To prove the theo-
rem we will undertake an analysis of qlogH(X1, . . . , Xn), in terms of the integral
coordinates Z1, . . . , Zn on Y . In the ring S+ we have the congruences

logH(y +
mYn) ≡ 
mξ(Zn − Zqn

n )

logH Π(y +
mYn) ≡ ξq

...

logH Πn−1(y +
mYn) ≡ ξq
n−1

,

and, for i = 1, . . . , n− 1,

logH Yi ≡ ξ(Zqn

i − Zi)

logH ΠYi ≡ ξqZq
i

...

logH Πn−1Yi ≡ ξq
n−1

Zqn−1

i .

Here a ≡ b is taken to mean “modulo smaller terms in S+.” We have used the fact
that ξq

n ≡ 
ξ. By Lemma 2.7.1, the coordinates of qlogH(Xi) with respect to the
standard basis of M(H0)⊗K are given by

qlogH(Xi) =
(
logH(Xi), logH(ΠXi), . . . , logH(Πn−1Xi)

)
.

This gives us an expression for the matrix qlogH(Xi)i=1,...,n ∈ M(H0)
n⊗S in terms

of Y0, . . . , Yn−1:

(qlog(Xi))i

=

⎛⎜⎜⎜⎝

m logH Yn 
m/2 logH Yn−1 · · · 
m/2 logH Y1


m/2 logH ΠY1 logH Π(y +
mYn) · · · 
m/2 logH ΠY2

...
...

. . .
...


m/2 logH Πn−1Yn−1 
m/2 logH Πn−1Yn−2 · · · logH Πn−1(y +
mYn)

⎞⎟⎟⎟⎠A.

Now take determinants. We apply the preceding congruences together with Lemma
3.7.1 to find that det qlogH(Xi) equals


mτ det

⎛⎜⎜⎜⎜⎜⎜⎝
Zn − Zqn

n Z1 − Zqn

1 Z2 − Zqn

2 · · · Zn−2 − Zqn

n−2 Zn−1 − Zqn

n−1

Zq
n−1 1 0 · · · 0 0

Zq2

n−2 0 1 · · · 0 0
...

. . .
...

Zqn

1 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
plus smaller terms in S+. Let f(Z1, . . . , Zn) denote the determinant appearing in
the above equation. Remarkably, the equation f = 0 cuts out the variety X defined
in Section 3.4. Since log∧H δ(X1, . . . , Xn) = det qlogH(X1, . . . , Xn), we have

log∧H δ(X1, . . . , Xn) ≡ 
mτf(Z1, . . . , Zn)
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modulo smaller terms in S+. Let δ = (δ0, δ1, . . . ) = δ(X1, . . . , Xn) ∈ ∧̃H(S+);
we intend to use the above congruence to give an approximation to δ in terms of
Z1, . . . , Zn. Let exp∧H(T ) ∈ K�T � be the exponential series of ∧H; this series
belongs to τOK̆ 〈T/τ 〉. Since log∧H δ ∈ 
mτS+, we have that log∧H δm ∈ τS+,
and therefore exp∧H log∧H δm converges to an element δ′m ∈ H(S+), and we have
log∧H(δm − δ′m) = 0. Thus δm − δ′m belongs to T (∧H)(S+) = T (∧H)(OC) (since
SpecS+ is connected). The homomorphism S+ → OC carrying each Zi to 0 takes

δm − δ′m to tm, so that in fact δm = tm + δ′m. Let δ′ = δ − t ∈ H̃(S+); then

δ0 = 
mδ′m.

We have δ′m = τg(Z1, . . . , Zn) for some g ∈ S+ = OC

〈
Z

1/q∞

1 , . . . , Z
1/q∞

n

〉
without

constant terms. Taking logarithms gives

log∧H δ ≡ 
mτ (g − gq) ≡ 
mτf

modulo smaller terms in S+. We can conclude from this that g−gq = f as elements

of Fq[Z
1/q∞

1 , . . . , Z
1/q∞

n ]. This means that (in this ring) g = −N . �

With Theorem 3.8.1, we can return to the proof of Theorem 3.6.1. By Theo-
rem 2.10.5, there is a Cartesian diagram

MH0,∞,C
δ ��

��

M∧H0,∞,C

��
H̃n

η,C δ
�� ∧̃Hη,C

.

Let ∧Z = Spa(T, T+) be the preimage of ∧Y in M∧H0,∞,C . The underlying topo-
logical space of ∧Z is the set of translates of t ∈ T (∧H)(OC) by 1 + pmK . Thus
T+ ∼= Cont(1 + pmK ,OC). Let ∧Z = Spf T+. Finally let Z = Y ×∧Y ∧Z. Then the
special fiber of Z fits into a Cartesian diagram

Z δ ��

��

∧Z

��
Y

δ
�� ∧Y

The scheme ∧Z is isomorphic to the “constant scheme” 1 + pmK = SpecCont(1 +

pmK ,Fp). Now apply Theorem 3.8.1: the bottom arrow is isomorphic to N : Uperf →
A1,perf . Thus we have a Cartesian diagram of schemes over Fq:

Z ��

��

1 + pmK

��
Uperf

N
�� A1,perf
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On the other hand, the variety X appears in a Cartesian diagram

X ��

��

Fq

��
U

N
�� A1

Taking the perfection of the second diagram and combining it with the first gives
a Cartesian diagram

Z ��

��

1 + pmK

��
Xperf

Fq

�� Fq,

thus establishing the first part of Theorem 3.6.1. We now establish that the group
J ⊂ GLn(K)×D××WK stabilizes Z and extends to an action on Z which induces
the action on Z described in Theorem 3.6.1. Since Z = Y ×∧Y ∧Z, we can just

show that J preserves Y , and that it induces the correct action on Y �−→ An,perf

Fq
.

Proposition 3.8.2. The action of J on H̃n
η,C preserves Y.

Proof. Recall that J is the subgroup of GLn(K)×D××WK generated by L××{1}
and S. The group L× is in turn generated by the diagonally embedded subgroup

Δ(O×
L ) along with the subgroups 1+pmL +p

m/2
L C◦

1 and 1+pmL +p
m/2
L C◦

2 of GLn(K)

and D×, respectively. Suppose then that g ∈ 1 + pmL + p
m/2
L C◦

1 . We have that C◦
1

is the OL-module spanned by s, s2, . . . , sn−1. So we may write

g = β0 + β1s+ · · ·+ βn−1s
n−1,

where βi ∈ OL, β0 ≡ 1 (mod pmL ), and βi ∈ p
m/2
L for i = 1, 2, . . . , n − 1. Recall

that Y was defined by the inequalities |λ0(Yi)| ≤ |λ0(y)| = |ξ| for i = 1, 2, . . . , n.
Our goal then is to show that these inequalities imply that |λ0(g(Yi))| ≤ |ξ| as well.
Applying g to Equation (3.8.1) gives

(3.8.2) (g(X1), . . . , g(Xn)) = (y +
mg(Yn), 

m/2g(Y1), . . . , 


m/2g(Yn−1))A.

By definition of the action of g on H̃n as a matrix we also have

(g(X1, . . . , g(Xn)) = (X1, . . . , Xn)g

= (y +
mYn, 

m/2Y1, . . . , 


m/2Yn)Ag

= (y +
mYn, 

m/2Y1, . . . , 


m/2Yn)AgA−1A.

By Lemma 3.7.2 we can compute

(3.8.3) AgA−1 =

⎛⎜⎜⎜⎝
β0 β1 · · · βn−1

βϕ
n−1 βϕ

0 · · · β�
n−2

...
...

. . .
...

βϕn−1

1 βϕn−1

2 · · · βϕn−1

0

⎞⎟⎟⎟⎠ .

Equating the above expressions for (g(X1), . . . , g(Xn)) gives an expression for each
g(Yi) in terms of Y1, . . . , Yn. For instance,

g(Yn) = 
−n(β0 − 1)y + β0Yn +
−m/2βϕ
n−1Y1 + · · ·+
−m/2β�n−1

1 Yn−1
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is an OL-linear combination of the elements Z = y, Y1, . . . , Yn ∈ H̃(R), all of which
satisfy |λ0(Z)| ≤ |ξ| on Y , and therefore so does g(Yn). The argument for the other
g(Yi) is similar. We leave it to the reader to verify the claim for the other types of
g in J . �

Lemma 3.8.3. The action of J on the identity element of Y �−→ Uperf is as
described by Theorem 3.6.1.

Proof. The CM point x = (α1y, . . . , αny) ∈ Y is the point where Y1 = · · · = Yn = 0.
Thus the reduction of this point in Y corresponds to the identity element of Uperf.

We verify the claim for those elements of J belonging to 1 + pmL + p
m/2
L C◦

1 ; the
calculation for the other generators of J is simpler. Let 1+ a1τ + · · ·+ anτ

n be an
element of U , and let g = 1+
man +
m/2as+ · · ·+
m/2an−1s

n−1 be a lift of it

to 1+pmL +p
m/2
L C◦

1 , with a1, . . . , an ∈ OL. At the point x
g, the variables Y1, . . . , Yn

take values determined by

(
mYn, 

m/2Y1, . . . , 


m/2Yn−1) = (α1y, . . . , αny)(g − 1)A−1

= (y, 0, . . . , 0)A(g − 1)A−1

= (
many,

m/2a1y, . . . , 


m/2an−1y),

which is to say that Yi = aiy. (Here we have used the calculation of AgA−1

from Equation (3.8.3).) Therefore the reduction of xg in Y �−→ Uperf is the point
1 + a1τ + · · ·+ anτ

n. �

Let ρ : J → AutAn,perf

Fq
be the action of J on Y �−→ An,perf

Fq
. We can now show

that ρ agrees with the action described in Theorem 3.6.1. That theorem describes

an action ρ′ : J → AutAn,perf

Fq
. The preceding lemma shows that for all g ∈ J ,

ρ′(g)ρ(g)−1 fixes the origin in An,perf

Fq
and all of its translations, which is to say it

fixes the subset An(Fqn) ⊂ An(Fqn). We also know that since ρ and ρ′ are both

Fq-semilinear in the same way, so that ρ′(g)ρ(g)−1 is actually Fq-linear. Finally,
we know that g descends to an automorphism of the Lubin-Tate tower at some
finite level, which means that ρ(g) descends to an automorphism of An

Fq
. These

considerations show that ρ′(g) = ρ(g).

3.9. The special affinoid: Case of m ≥ 1 odd. Once again, elements Y1, . . . ,

Yn ∈ H̃(R) are defined by a system of linear equations:

(X1, . . . , Xn) = (y +
mYn, 

(m−1)/2ΠY1, . . . , 
(m− 1)/2Πn−1Yn−1).

Write λ0(Yi) = ξZi. As before, the rational subset Y = Spa(S, S+) is defined by
the conditions |Zi| ≤ 1 for i = 1, . . . , n. Let Y = Spf S+. We have the following
congruences in S+:

logH(y +
mYn) ≡ 
mξ(Zqn

n − Zn)

logH Π(y +
mYn) ≡ 
(m−1)/2ξq

...

logH Πn−1(y +
mYn) ≡ 
(m−1)/2ξq
n−1
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and, for i = 1, . . . , n− 1,

logH 
(m−1)/2ΠiYi ≡ 
(m−1)/2ξq
i

Zqi

i

logH 
(m−1)/2Πi+1Yi ≡ 
(m−1)/2ξq
i+1

Zqi+1

i

...

logH 
(m−1)/2ΠnYi ≡ 
(m+1)/2ξ(Zi − Zqn

i )

...

logH 
(m−1)/2Πi+n−1Yi ≡ 
(m+1)/2ξq
i−1

Zqi−1

i .

The determinant of (qlog(Xi))i equals

τ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�m(Zqn

n − Zn) �
m+1

2 (Zqn

n−1 − Zn−1) · · · �
m+1

2 (Zqn

2 − Z2) �
m+1

2 (Zqn

1 − Z1)

�
m−1

2 Zq
1 1 · · · �

m+1
2 Zq

3 �
m+1

2 Zq
2

�
m−1

2 Zq2

2 �
m−1

2 Zq2

1 · · · �
m+1

2 Zq2

4 �
m+1

2 Zq2

3
...

...
. . .

...
...

�
m−1

2 Zqn−1

n−1 �
m−1

2 Zqn−1

n−2 · · · �
m−1

2 Zqn−1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

plus smaller terms. Up to smaller terms (and up to sign), this latter determinant
equals 
mτ times

(3.9.1) det

⎛⎜⎜⎜⎜⎜⎜⎝
Zqn

n − Zn Zqn

n−1 − Zn−1 · · · Zqn

2 − Z2 Zqn

1 − Z1

Zq
1 1 · · · 0 0

Zq2

2 Zq2

1 · · · 0 0
...

...
. . .

...
...

Zqn−1

n−1 Zqn−1

n−2 · · · Zqn−1

1 1

⎞⎟⎟⎟⎟⎟⎟⎠
if m = 1, and

(3.9.2) det

⎛⎜⎜⎜⎜⎜⎜⎝
Zqn

n − Zn Zqn

n−1 − Zn−1 · · · Zqn

2 − Z2 Zqn

1 − Z1

Zq
1 1 · · · 0 0

Zq2

2 0 · · · 0 0
...

. . .
...

Zqn−1

n−1 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
ifm ≥ 3. Let f(z1, . . . , zn) ∈ Fqn [z1, . . . , zn] be the polynomial defined in Equations
(3.9.1) and (3.9.2). We have the congruence

(3.9.3) det(qlog(X1), . . . , qlog(Xn)) ≡ 
mτf(Z1, . . . , Zn)

modulo smaller terms in S+. Once again, f = 0 cuts out the variety X (see
Equations (3.4.1) and (3.4.2)). We now proceed exactly as in the case of m even
to complete the proof of Theorem 3.6.1.

Part 2. Deligne-Lusztig theory for certain unipotent groups

4. Formulation of the results

4.1. Overview. This part can be read essentially independently of the rest of the
article. In it we formulate and prove a more precise version of Theorem B stated in
the Introduction. We use the methods developed in [2, Section 2]. A special case
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of Theorem B is also proved in the preprint [4], to which we refer the reader who
would first like to see how our approach works in a simpler setting. However, for
the purpose of proving Theorem A, the full strength of Theorem B is needed, and
the arguments that appear in the current part of the article do not rely on op. cit.

4.2. Notation. Throughout this part of the article, we fix prime numbers p �= �,
a power q of p, and an integer n ≥ 2. We will freely use the formalism of �-adic
cohomology with compact supports and the standard notation and terminology of
that theory. The only nonstandard notation we employ is as follows.

Remarks 4.2.1. (1) If X is a scheme of finite type over Fq and F is a (constructible)
�-adic sheaf, we write Hi

c(X,F) in place of Ripr!(F), where pr : X → Spec(Fq)
is the structure morphism. With this convention, Hi

c(X,F) is an �-adic sheaf
on Spec(Fq), i.e., a continuous finite dimensional representation of Gal(Fq/Fq)

over Q�. The underlying vector space of Hi
c(X,F) is equal to the compactly

supported cohomology Hi
c(X ⊗Fq

Fq,F), and the action of the canonical gen-

erator of Gal(Fq/Fq) on Hi
c(X,F) will be denoted by Frq.

(2) The above conventions apply in particular to the case where F = Q� is the
constant Q�-local system of rank 1 on X.

(3) Our normalization of Frq is such that the Tate twist Q�(1) on Spec(Fq) corre-

sponds to a one-dimensional vector space over Q� on which Frq acts as q−1. So,

for example, H2
c (A

1,Q�) = Q�(−1) and Hi
c(A

1,Q�) = 0 for i �= 2, where A1 is
the affine line over Fq.

4.3. Additive characters of Fqn . Given a character ψ : Fqn → Q
×
� , there is a

unique integer 1 ≤ m ≤ n (which divides n) such that ψ factors through the trace
map TrFqn/Fqm

: Fqn → Fqm and does not factor through the trace map Fqn → Fqk

for any 1 ≤ k < m. We call qm the conductor of ψ. Since TrFqn/Fqm
is surjective,

we can write ψ = ψ1 ◦ TrFqn/Fqm
for a unique character ψ1 : Fqm → Q

×
� .

4.4. Definitions. In Section 3.4 we introduced a unipotent group U over Fqn , a

hyperplane Y ⊂ U, and a smooth hypersurface X = L−1
qn (Y ) ⊂ U, where Lqn :

U → U is the Lang morphism g 	→ Frqn(g) · g−1. The definition of U depends
on whether m = 1 or m ≥ 2, where m is the positive integer appearing in the
formulation of Theorem A from the Introduction. For the sake of brevity, we will
treat both cases simultaneously. Since we will need to vary n and q in what follows,
we will modify the notation U to make the dependence on n and q more explicit.

We first introduce a (noncommutative) ring object R in the category of affine
Fqn -schemes defined as follows. If B is a commutative Fqn -algebra, then R(B) is
the ring consisting of all formal expressions a0 + a1 · e1 + · · · + an · en, which are
added in the obvious way and multiplied according to the following rules.

4.4.1. Case 1. This case corresponds to the case where m = 1 in Theorem A:

• ei · a = aq
i · ei for all 1 ≤ i ≤ n and all a ∈ B;

• for all i, j ≥ 1,

ei · ej =
{
ei+j if i+ j ≤ n,

0 otherwise.
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4.4.2. Case 2. This case corresponds to the case where m ≥ 2 in Theorem A:

• ei · a = aq
i · ei for all 1 ≤ i ≤ n and all a ∈ B;

• for all i, j ≥ 1,

ei · ej =
{
en if i+ j = n,

0 otherwise.

Remark 4.4.1. In the remainder of this part of the article, the letter m will be used
as an auxiliary index, independent of its meaning in Theorem A.

In both cases the multiplicative group R× ⊂ R is given by a0 �= 0, and we let
Un,q ⊂ R× denote the subgroup defined by a0 = 1. Then Un,q is the unipotent
group that was denoted by U in Section 3. We write Y ⊂ Un,q for the subvariety
defined by an = 0 and we put X = L−1

qn (Y ). The finite group Un,q(Fqn) acts on

X by right translation, so we obtain a representation of Un,q(Fqn) on Hi
c(X,Q�)

(cf. Remarks 4.2.1) for each i ∈ Z, which commutes with the action of Frqn .

Remark 4.4.2. By construction, the ring R(Fqn) of Fqn -valued points of R can be
identified with the quotient ring S = L/P considered in Lemma 3.3.1.

Remark 4.4.3. If Z ⊂ Un,q consists of expressions of the form 1 + anen, then Z is
the center of Un,q and Z(Fqn) is the center of Un,q(Fqn). We have Z ∼= Ga, and we
often tacitly identify the two groups. In particular, every irreducible representation

of Un,q(Fqn) over Q� has a central character Fqn → Q
×
� .

Remark 4.4.4. We recall from Section 3.5 that there is a natural group homo-
morphism Un,q(Fqn) → Fq (there it was denoted simply by N). In this part we
will denote it by Nmn,q and refer to it as the reduced norm map. An alterna-
tive approach to defining Nmn,q, which is independent of Part 1, can be found
in Section 5. In particular, Proposition 5.1.1 shows that Nmn,q depends only on
whether m = 1 or m ≥ 2 in Theorem A, which is not obvious from the original
definition.

This map plays the following role in the study of representations of Un,q(Fqn).
The restriction of Nmn,q to Z(Fqn) = Fqn is equal to the trace map TrFqn/Fq

. In

particular, given a character ψ : Z(Fqn) → Q
×
� with conductor q, we obtain a

preferred extension of ψ to a character of Un,q(Fqn). Namely, if ψ = ψ1 ◦TrFqn/Fq
,

where ψ1 : Fq → Q
×
� , then ψ1 ◦Nmn,q : Un,q(Fqn) → Q

×
� extends ψ.

Remark 4.4.5. Suppose that n = m · n1, where m,n1 ∈ N, and put q1 = qm, so
that qn1

1 = qn. We can consider the unipotent group Un1,q1 over Fqn . To avoid
confusion, let us temporarily denote its elements by 1+ b1e

′
1+ · · ·+ bn1

e′n1
. We can

naturally embed Un1,q1 as a subgroup of Un,q via the map

1 + b1e
′
1 + b2e

′
2 + · · ·+ bn1

e′n1
	−→ 1 + b1em + b2e2m + · · ·+ bn1

en.

From now on we identify Un1,q1 with its image under this embedding. In particular,
we view Un1,q1(Fqn) as the subgroup of Un,q(Fqn) consisting of all elements of the
form 1 +

∑
m|j ajej , where each aj ∈ Fqn .
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4.5. A more precise version of Theorem B.

Theorem 4.5.1. Fix an arbitrary character ψ : Fqn −→ Q
×
� .

(a) There is a unique (up to isomorphism) irreducible representation ρψ of Un,q(Fqn)
that has central character ψ and occurs in

H•
c (X,Q�) :=

⊕
i∈Z

Hi
c(X,Q�).

Moreover, the multiplicity of ρψ in H•
c (X,Q�) as a representation of Un,q(Fqn)

is equal to 1.

(b) Let ψ have conductor qm, so that n = mn1 for some n1 ∈ N. Then ρψ occurs

in Hn+n1−2
c (X,Q�), and Frqn acts on it via the scalar (−1)n−n1 · qn(n+n1−2)/2.

(c) The representation ρψ can be constructed as follows. Write ψ = ψ1 ◦TrFqn/Fq1

for a unique character ψ1 : Fq1 −→ Q
×
� , where q1 = qm as in Remark 4.4.5.

Put

Hm =
{
1 +

∑
j≤n/2
m|j

ajej +
∑

n/2<j≤n

ajej

}
⊂ Un,q,

a connected subgroup. The projection νm : Hm −→ Un1,q1 obtained by dis-
carding all summands ajej with m � j (cf. Remark 4.4.5) is a group homo-

morphism, and ψ̃ := ψ1 ◦ Nmn1,q1 ◦νm is a character of Hm(Fqn) that extends

ψ : Z(Fqn) −→ Q
×
� (see Remark 4.4.4). With this notation:

• if m is odd or n1 is even, then ρψ ∼= Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃);

• if m is even and n1 is odd, then Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃) is isomorphic to a direct

sum of qn/2 copies of ρψ. Moreover, in this case, if Γm ⊂ Un,q(Fqn) is the
subgroup consisting of all elements of the form h + an/2en/2, where h ∈
Hm(Fqn) and an/2 ∈ Fqn/2 , then ψ̃ can be extended to a character of Γm,

and if χ : Γm −→ Q
×
� is any such extension, then ρψ ∼= Ind

Un,q(Fqn )
Γm

(χ).

Remark 4.5.2. By construction, X is a finite étale cover of Y ∼= An−1, so all
connected components of X⊗Fqn

Fq are irreducible and smooth of dimension n−1.

Theorem 4.5.1 implies that the top compactly supported cohomology H2n−2
c (X,Q�)

has dimension q (indeed, as a representation of Un,q(Fqn) it is the direct sum of
one-dimensional representations of the form ψ1 ◦ Nmn,q, where ψ1 ranges over all

characters Fq → Q
×
� ), and Frqn acts on it via the scalar qn(n−1)/2. Hence X

has q connected components, which are geometrically irreducible and smooth of
dimension n− 1.

Let us give an explicit description of these components. In Section 5 below we
introduce a morphism Nn,q : Un,q −→ Ga, which extends the reduced norm map
Nmn,q in the sense that Nn,q : Un,q(Fqn) −→ Fqn has an image in Fq and is equal to
Nmn,q. By Proposition 5.1.1, X can be described as the subvariety of Un,q ⊗Fq

Fqn

defined by the equation Nn,q(g)q = Nn,q(g). Hence the connected components of
X are precisely the subvarieties given by Nn,q(g) = c as c ranges over the points of
Fq ⊂ Ga.
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5. Properties of the reduced norm map

5.1. Summary. In this section we will extend the reduced norm map mentioned
in Remark 4.4.4 to a morphism of Fqn -varieties N

n,q : Un,q → Ga (it was denoted
simply by N in Section 3.5) and establish some properties of Nn,q. The main result
is the Proposition 5.1.1.

Proposition 5.1.1. (a) There is a unique morphism Nn,q : Un,q → Ga of Fqn-
schemes such that Nn,q(1) = 0 and prn(Lqn(g)) = Nn,q(g)q − Nn,q(g) for all
g ∈ Un,q, where prn : Un,q → Ga denotes the projection onto the last coordinate
en.

(b) If g ∈ Un,q and h ∈ Un,q(Fqn), then Nn,q(gh) = Nn,q(g) +Nn,q(h).

(c) We have Nn,q(g) = Nmn,q(g) for all g ∈ Un,q(Fqn).

Example 5.1.2. If n = 2, the two cases considered in Sections 4.4.1 and 4.4.2 become

the same. For g = 1+ a1e1 + a2e2 ∈ U2,q, we have Frq2(g) = 1+ aq
2

1 e1 + aq
2

2 e2 and

g−1 = 1− a1e1 + (a1+q
1 − a2)e2, so that pr2(Lq2(g)) = aq

2

2 + a1+q
1 − a2 − aq

2+q
1 and

hence N2,q(g) = a2 + aq2 − a1+q
1 . For higher n, it is possible to give a formula for

Nn,q(g) as the determinant of a certain matrix whose entries are given explicitly
in terms of the coefficients in the expansion g = 1 + a1e1 + · · · + anen, but we do
not find this formula to be useful and prefer to work exclusively in terms of the
axiomatic characterization given in Proposition 5.1.1.

Corollary 5.1.3. If g ∈ Un,q(Fqn) is such that prn(Lqn(g)) ∈ Fqn , then

TrFqn/Fq

(
prn(Lqn(g))

)
= Nn,q(Frqn(g))−Nn,q(g).

Proof. By the proposition, prn(Lqn(g)) = Nn,q(g)q −Nn,q(g), whence

TrFqn/Fq

(
prn(Lqn(g))

)
=

n−1∑
i=0

prn(Lqn(g))
qi = Nn,q(g)q

n −Nn,q(g).

But Nn,q(g)q
n

= Frqn(N
n,q(g)) = Nn,q(Frqn(g)), completing the proof. �

5.2. Proof of Proposition 5.1.1(a). We begin by proving the uniqueness ofNn,q.
Suppose that N1 : Un,q → Ga is another morphism with the same properties as
Nn,q. Then

(
Nn,q(g) −N1(g)

)q
= Nn,q(g)−N1(g) for all g ∈ Un,q , which means

that the image ofNn,q−N1 : Un,q → Ga is contained in the discrete subset Fq ⊂ Ga.
Since Un,q is connected, Nn,q − N1 is constant. Since Nn,q(1) = N1(1), we have
Nn,q ≡ N1.

To prove the existence of Nn,q we use Lemma 5.2.1.

Lemma 5.2.1. Every element of Un,q can be written uniquely as

1 + a1e1 + a2e2 + · · ·+ anen = (1− b1e1) · (1− b2e2) · · · · · (1− bnen).

The maps relating each of the n-tuples (ai) and (bj) to the other one are polynomial
functions with coefficients in Fp.

Proof. This is straightforward: first observe that b1 must necessarily equal −a1.
Then multiply both sides of the identity above by (1 + a1e1)

−1 on the left, and
observe that the left hand side takes the form 1 + a′2e2 + · · ·+ a′nen, where the a′j
are certain polynomial functions of the ai. Proceed by induction. �
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To complete the proof of Proposition 5.1.1(a), we consider the following situation.
Assume that we are given an element of Un,q of the form

g = (1− bkek) · (1− bk+1ek+1) · · · · · (1− bnen),

where 1 ≤ k ≤ n. We would like to show that there exists a polynomial map Fk

(depending only on k) such that prn(Lqn(g)) = Fk(bk, . . . , bn)
q − Fk(bk, . . . , bn).

To this end, we use descending induction on k. When k = n, we have g =

1− bnen, so Lqn(g) = 1+ (bn − bq
n

n )en, and we can take Fn(bn) = −(1 + bqn + bq
2

n +

· · ·+ bq
n−1

n ).

Now suppose that 1 ≤ k < n is arbitrary. We have

Lqn(g) = (1− bq
n

k ek) · · · · · (1− bq
n

n en) · (1− bnen)
−1 · · · · · (1− bkek)

−1,

which can be rewritten as

Lqn(g) = (1− bq
n

k ek) ·
(
1 +

n∑
i=k+1

ciei

)
·
(
1 + (bkek) + (bkek)

2 + · · ·
)
.

Here each ci is some polynomial function of the variables bk+1, . . . , bn. Further, by
induction, we may assume that

cn = Fk+1(bk+1, . . . , bn)
q − Fk+1(bk+1, . . . , bn)

for some polynomial function Fk+1.

Expanding out the product above and collecting only the terms that involve en,
we obtain the following expression:

cnen +
[
(cn−ken−k) · (bkek) + (cn−2ken−2k) · (bkek)2 + · · ·

]
− (bq

n

k ek) · [(cn−ken−k) + (cn−2ken−2k) · (bkek) + · · · ] .
Thanks to our induction assumption, the term cnen can be ignored for the purpose
of the present proof. The remaining terms can be regrouped as follows:∑

i≥1

[
(cn−iken−ik) · (bkek)i − (bq

n

k ek) · (cn−iken−ik) · (bkek)i−1
]
.

It remains to observe that if we are in the case of Section 4.4.2, then the terms with
i ≥ 2 in the last sum are all 0, and the sum becomes(
cn−ken−k

)
·
(
bkek

)
−

(
bq

n

k ek
)
·
(
cn−ken−k

)
=

[(
cn−kb

qn−k

k

)
−

(
cn−kb

qn−k

k

)qk] · en.
On the other hand, if we are in the case of Section 4.4.1, then

(cn−iken−ik) · (bkek)i − (bq
n

k ek) · (cn−iken−ik) · (bkek)i−1

=
(
cn−ik · bq

n−ik(1+qk+···+qki−k)
k − cq

k

n−ik · bq
n+qn−ik+k(1+qk+···+qki−2k)

k

)
· en

=
(
cn−ik · bq

n−ik+qn−ik+k+···+qn−k

k − cq
k

n−ik · b
qn−ik+k+qn−ik+2k+···+qn

k

)
· en,

and since

cn−ik · bq
n−ik+qn−ik+k+···+qn−k

k − cq
k

n−ik · b
qn−ik+k+qn−ik+2k+···+qn

k = A−Aqk ,

where A = cn−ik · bq
n−ik+qn−ik+k+···+qn−k

k , the induction step is complete.
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Finally, define Nn,q : Un,q −→ Ga by the formula

Nn,q
(
(1− b1e1) · (1− b2e2) · · · · · (1− bnen)

)
= F1(b1, . . . , bn).

It is clear that Nn,q has the two properties stated in Proposition 5.1.1(a).

5.3. Proof of Proposition 5.1.1(b). Fix h ∈ Un,q(Fqn). The Lang map Lqn :
Un,q → Un,q has the property that Lqn(gh) = Lqn(g) for all g ∈ Un,q, whence

Nn,q(gh)q −Nn,q(gh) = Nn,q(g)q −Nn,q(g)

by the definition of Nn,q. By the same argument as in the proof of the uniqueness
assertion of Proposition 5.1.1(a), the morphism Un,q → Ga given by g 	→ Nn,q(gh)−
Nn,q(g) is constant. Its value at g = 1 equals Nn,q(h), proving Proposition 5.1.1(b).

5.4. Proof of Proposition 5.1.1(c). We use an observation due to Drinfeld.
Recall that Un,q is a normal subgroup of the multiplicative group R× of the ring
scheme R introduced in Section 4.4. Now R× also contains the multiplicative group
Gm as the subgroup defined by the equations a1 = a2 = · · · = an = 0, so we obtain
a conjugation action of Gm on Un,q: for g ∈ Un,q , and the action map is given by

(5.4.1) Gm � λ : g = 1 +

n∑
j=1

ajej 	−→ λgλ−1 = 1 +

n∑
j=1

λ1−qjajej .

Lemma 5.4.1. The reduced norm map Nmn,q : Un,q(Fqn) −→ Fq is the unique
group homomorphism which is invariant under the action of F×

qn on Un,q(Fqn) com-
ing from (5.4.1) and restricts to TrFqn/Fq

on the center Z(Fqn) = Fqn of Un,q(Fqn).

Proof. The fact that Nmn,q has all of the stated properties follows easily from
its original definition (cf. Remarks 4.4.4, 4.4.2 and Section 3.5). To check the
uniqueness claim, let H ⊂ Un,q(Fqn) be the subgroup generated by all elements of
the form g−1 · (λgλ−1) with g ∈ Un,q(Fqn) and λ ∈ F×

qn . It suffices to show that
Un,q(Fqn) = H · Z(Fqn).

Assume that this is not the case, and let g = 1 +
∑n

j=k ajej ∈ Un,q(Fqn) be an

element that does not belong to H ·Z(Fqn), where k ≥ 1 is as large as possible. In

particular, k < n. Hence there exists λ ∈ F×
qn with λ1−qk �= 1. Put b = ak

λ1−qk−1
and

g1 = 1+ bek. Then g−1
1 · (λg1λ−1) = 1+akek +O(ek+1), where O(ek+1) denotes an

unspecified expression of the form
∑

j≥k+1 a
′
jej . Therefore g = g−1

1 · (λg1λ−1) · g′
for some g′ ∈ Un,q(Fqn) such that g′ = 1 + O(ek+1). The maximality of k implies
that g′ ∈ H · Z(Fqn), which is a contradiction. �

To see that Lemma 5.4.1 implies Proposition 5.1.1(c), we argue as follows. As a
special case of Proposition 5.1.1(b), we see that Nn,q : Un,q(Fqn) → Fq is a group
homomorphism. Hence it suffices to check that Nn,q is invariant under the action
(5.4.1) and that Nn,q(1 + aen) = TrFqn/Fq

(a) for all a ∈ Fqn .

Choose any 1 ≤ j ≤ n, pick x ∈ Fqn , and consider g = 1 − xej ∈ Un,q(Fqn).
We will check that Nn,q(λgλ−1) = Nn,q(g) for any λ ∈ F×

qn , and, in addition, if
j = n, then Nn,q(g) = −TrFqn/Fq

(x). Since (5.4.1) is a group action, and since

Nn,q : Un,q(Fqn) −→ Fq is a homomorphism, it will follow from Lemma 5.2.1 that
Nn,q : Un,q(Fqn) −→ Fq is invariant under the F×

qn -action coming from (5.4.1) and
the proof will be complete. As before, we consider two cases.
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5.4.1. Case 1. Assume that we are in the case of Section 4.4.1 and consider the
restriction of Nn,q to the subvariety of Un,q consisting of all points of the form
1− bej (this subvariety is isomorphic to A1). We calculate it explicitly as follows.
We have

Lqn(1− bej) = (1− bq
n

ej) ·
[
1 + (bej) + (bej)

2 + · · ·
]
,

so if j � n, we get prn
(
Lqn(1 − bej)

)
= 0 and Nn,q(1 − bej) = 0, while if j | n, we

get

prn(Lqn(1− bej)) = b1+qj+q2j+···+qn−j − bq
j+q2j+···+qn ,

whence1

Nn,q(1− bej) = −ϕ(b)− ϕ(b)q − ϕ(b)q
2 − · · · − ϕ(b)q

j−1

,

where ϕ(b) := b1+qj+···+qn−j

. In particular, if j = n, we obtain ϕ(x) = x and
Nn,q(1 − xen) = −TrFqn/Fq

(x). In addition, if j is arbitrary, then given λ ∈ F×
qn ,

we have λ(1−bej)λ
−1 = 1−λ1−qj bej . So if j � n, we get Nn,q

(
λ(1−bej)λ

−1
)
= 0 =

Nn,q(1−bej). If j | n, then with the notation above, ϕ(λ1−qjb) = λ1−qnϕ(b) = ϕ(b),
so we again have Nn,q

(
λ(1− bej)λ

−1
)
= Nn,q(1− bej), completing the proof.

5.4.2. Case 2. Now assume instead that we are in the case of Section 4.4.2. Then
we can repeat the same calculations as in the previous case, the sole difference being
that the condition j | n must be replaced with the following one: either n = j or
n = 2j.

6. Proof of Theorem B

6.1. Outline of the argument. We first describe the strategy we will use to prove
Theorem 4.5.1 (which is a stronger version of Theorem B from the Introduction).

We fix a character ψ : Fqn → Q
×
� and let qm be its conductor. We also write

n1 = n/m and q1 = qm, and let ψ1 : Fq1 → Q
×
� be the character such that

ψ = ψ1 ◦ TrFqn/Fq1
.

Recall that prn : Un,q → Ga denotes the projection onto the last factor:

prn(1 + a1e1 + · · ·+ anen) = an.

If W ⊂ Un,q is a subvariety, we also write prn for the restriction of prn to W .

Step 1. We first obtain some information about the irreducible representations of
the group Un,q(Fqn). To this end, along with the closed connected subgroup

Hm =
{
1 +

∑
j≤n/2
m|j

ajej +
∑

n/2<j≤n

ajej

}
⊂ Un,q

defined in Theorem 4.5.1(c), we introduce two more:

H+
m =

{
1 +

∑
j<n/2
m|j

ajej +
∑

n/2≤j≤n

ajej

}
⊂ Un,q

1Here we are using the fact that A1 is connected to ensure that the expression we wrote down
coincides with Nn,q(1− bej) for all b ∈ A1 (cf. the proof of uniqueness in Proposition 5.1.1(a)).
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and

H−
m =

{
1 +

∑
n/2<j<n

m�j

ajej + anen

}
⊂ Un,q.

By construction, H−
m ⊂ Hm ⊂ H+

m. The subgroup H−
m will play a role in the other

steps of the proof as well.

Remarks 6.1.1. (1) We have H+
m = Hm unless m is even and n1 is odd, in which

case Hm is a normal subgroup of H+
m of codimension 1.

(2) If m = n, then H−
m = Hm.

The following lemma is proved in Section 6.2.

Lemma 6.1.2. If ρ is an irreducible representation of Un,q(Fqn) with central char-
acter ψ, the restriction of ρ to H−

m(Fqn) contains the character ψ◦prn : H−
m(Fqn) →

Q
×
� .

Now consider the character2 ψ̃ := ψ1 ◦Nmn1,q1 ◦νm : Hm(Fqn) → Q
×
� .

Remark 6.1.3. Recall that νm : Hm(Fqn) −→ Un1,q1(Fqn) is the map that discards

all summands ajej with m � j (cf. Remark 4.4.5). Hence ψ̃
∣∣
H−

m(Fqn )
= ψ ◦ prn.

Proposition 6.1.4. (a) Suppose that m is odd or n1 is even. Then

ρψ := Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃)

is an irreducible representation of Un,q(Fqn).

(b) Suppose that m is even and n1 is odd.3 Let Γm ⊂ Un,q(Fqn) be the subgroup
defined in Theorem 4.5.1(c); in other words,

Γm =
{
γ = 1 +

n∑
j=1

ajej

∣∣∣γ ∈ H+
m(Fqn) and an/2 ∈ Fqn/2

}
.

Then ψ̃ can be extended to a character of Γm, and if χ : Γm −→ Q
×
� is

any such extension, then ρψ := Ind
Un,q(Fqn )
Γm

(χ) is an irreducible represen-
tation of Un,q(Fqn), which is independent of the choice of χ. Furthermore,

Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃) is isomorphic to a direct sum of qn/2 copies of ρψ.

In both cases, the restriction of ρψ to H−
m(Fqn) contains ψ ◦ prn; in particular, ρψ

has central character ψ.

This proposition is proved in Section 6.4.

Step 2. We consider H•
c (X,Q�) =

⊕
i∈Z H

i
c(X,Q�) as a finite dimensional graded

vector space over Q� equipped with commuting actions of Un,q(Fqn) and Frqn . In
particular, given any representation (not necessarily irreducible) ξ of Un,q(Fqn), we

obtain a graded vector space HomUn,q(Fqn )

(
ξ,H•

c (X,Q�)
)
with an action of Frqn .

2The fact that the projection map νm : Hm → Un1,q1 is a group homomorphism is verified by
a direct calculation, and since the restriction of Nmn1,q1 : Un1,q1 (Fqn) −→ Fq1 to Z(Fqn ) is equal

to TrFqn/Fq1
: Fqn −→ Fq1 , we see that ψ̃ is indeed a character that extends ψ : Z(Fqn ) −→ Q

×
� .

3Equivalently, n is even and m does not divide n/2.
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Now consider the representation ξψ = Ind
Un,q(Fqn )

H−
m(Fqn )

(ψ ◦ prn). In view of Lemma

6.1.2, ξψ is isomorphic to a direct sum of all irreducible representations of Un,q(Fqn)
that have central character ψ, taken with certain multiplicities.

Proposition 6.1.5. HomUn,q(Fqn )

(
ξψ, H

•
c (X,Q�)

)
is concentrated in degree n +

n1 − 2. It has dimension 1 if m is odd or n1 is even, and it has dimension qn/2 if
m is even and n1 is odd. Frqn acts on it via the scalar (−1)n−n1 · qn(n+n1−2)/2.

This proposition is proved in Section 6.5.

Step 3. The last ingredient is the following result, proved in Section 6.8.

Proposition 6.1.6. If ρψ is the representation of Un,q(Fqn) constructed in Propo-

sition 6.1.4, then HomUn,q(Fqn )

(
ρψ, H

•
c (X,Q�)

)
�= 0.

The finale. Let us show that combining the three steps above, we obtain a proof
of Theorem 4.5.1. Write ρψ for the irreducible representation of Un,q(Fqn) con-

structed in Proposition 6.1.4. Then H•
c (X,Q�) contains ρψ as a direct summand

by Proposition 6.1.6. Introduce the following multiplicities:

d1 = dimHomUn,q(Fqn )

(
ρψ, H

•
c (X,Q�)

)
≥ 1,

d2 = dimHomUn,q(Fqn )

(
ρψ, ξψ

)
,

d3 = dimHomUn,q(Fqn )

(
ξψ, H

•
c (X,Q�)

)
.

Then d2 is at least the multiplicity of ρψ in Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃). Furthermore, it is

clear that d3 ≥ d1 · d2, and equality holds if and only if ρψ is the unique irreducible

representation of Un,q(Fqn) that appears both in H•
c (X,Q�) and in ξψ.

We now claim that d2 ≥ d3. Indeed, combining Proposition 6.1.4 with Proposi-
tion 6.1.5, we see that

d3 = dimHomUn,q(Fqn )

(
ρψ, Ind

Un,q(Fqn )

Hm(Fqn ) (ψ̃)
)
.

The last assertion of Remark 6.1.3 implies that Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃) is a direct summand

of ξψ, whence d2 ≥ d3.

Comparing the assertions of the last two paragraphs, we find that d1 = 1 and
d1 · d2 = d2 = d3. In view of the first and third assertions of Proposition 6.1.5, we
see that all parts of Theorem 4.5.1 follow.

6.2. Proof of Lemma 6.1.2. Fix an irreducible representation ρ of Un,q(Fqn)
with central character ψ. We must prove that the restriction of ρ to H−

m(Fqn)

contains the one-dimensional representation ψ ◦ prn : H−
m(Fqn) −→ Q

×
� . For each

integer k we write U≥k ⊂ Un,q for the subgroup consisting of elements of the form
1 +

∑n
j=k ajej . We will show, using descending induction on k, that for any k the

restriction of ρ to H−
m(Fqn) ∩ U≥k(Fqn) contains the character ψ ◦ prn. This will

imply the lemma.

If k = n, there is nothing to prove. So we assume that k < n and that the
assertion in the previous paragraph holds for k + 1 in place of k. Further, we
may assume that k > n/2 and m � k, since otherwise H−

m(Fqn) ∩ U≥k(Fqn) =
H−

m(Fqn) ∩ U≥k+1(Fqn).
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By the induction hypothesis, the restriction of ρ to H−
m(Fqn)∩U≥k+1(Fqn) con-

tains ψ◦prn. This implies that the restriction of ρ to H−
m(Fqn)∩U≥k(Fqn) contains

some character χ : H−
m(Fqn) ∩ U≥k(Fqn) −→ Q

×
� such that

χ
∣∣
H−

m(Fqn )∩U≥k+1(Fqn )
= ψ ◦ prn.

The subgroup U≥n−k(Fqn) ⊂ Un,q(Fqn) normalizes H−
m(Fqn) ∩ U≥k(Fqn) and cen-

tralizesH−
m(Fqn)∩U≥k+1(Fqn). It will be enough to find an element g ∈ U≥n−k(Fqn)

that conjugates χ into the character ψ ◦ prn on H−
m(Fqn) ∩ U≥k(Fqn).

To this end, observe that by construction, we can write

χ
(
1 +

∑
k≤j<n
m�j

ajej + anen

)
= χ1(ak) · ψ(an)

for some character χ1 : Fqn → Q
×
� . Let g = 1 + an−ken−k ∈ U≥n−k(Fqn), where

an−k ∈ Fqn will be chosen later. Then a direct calculation shows that

χ

(
g ·

(
1 +

∑
k≤j<n
m�j

ajej + anen

)
· g−1

)
= χ1(ak) · ψ

(
an + an−ka

qn−k

k − aka
qk

n−k

)
.

It remains to check that an−k ∈ Fqn can be chosen so that

(6.2.1) χ1(x) = ψ
(
aq

k

n−kx− an−kx
qn−k)

for all x ∈ Fqn . If we fix a nontrivial character ψ0 : Fp → Q
×
� , we can find (unique)

y, b ∈ Fqn such that χ1(x) = ψ0

(
TrFqn/Fp

(yx)
)
and ψ(x) = ψ0

(
TrFqn/Fp

(bx)
)
for all

x ∈ Fqn . Then

ψ
(
aq

k

n−kx− an−kx
qn−k)

= ψ0

(
TrFqn/Fp

(
baq

k

n−kx− ban−kx
qn−k))

= ψ0

(
TrFqn/Fp

(
aq

−(n−k)

n−k · x · (b− bq
k

)
))

,

where we used the identities aq
k

n−k = aq
−(n−k)

n−k and bq
k

= bq
−(n−k)

(which hold

because an−k, b ∈ Fqn) together with the fact that TrFqn/Fp
(zq

n−k

) = TrFqn/Fp
(z)

for all z ∈ Fqn . Since m � k and ψ has conductor qm by assumption, we have

bq
k �= b. So if we choose an−k =

(
y/(b− bq

k

)
)qn−k

, then (6.2.1) is satisfied. �

6.3. Auxiliary lemmas on finite group representations. The next two lem-
mas (which are rather standard) will be used in the proof of Proposition 6.1.4.

Lemma 6.3.1. Let Γ be a finite group, N ⊂ Γ a normal subgroup, and χ : N → Q
×
�

a character. Write Γχ ⊂ Γ for the stabilizer of χ with respect to the conjugation
action of Γ. If ρ is any irreducible representation of Γχ whose restriction to N is
isomorphic to a direct sum of copies of χ, then IndΓΓχ ρ is irreducible.

The proof is an easy exercise in applying Mackey’s irreducibility criterion.

Lemma 6.3.2 (See Proposition B.4 in [3] and its proof). Let H be a finite group,

N ⊂ H a normal subgroup, and χ : N → Q
×
� a character that is invariant under

H-conjugation. Assume also that N contains the commutator subgroup [H,H].
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(a) The map H × H −→ Q
×
� given by (h1, h2) 	→ χ(h1h2h

−1
1 h−1

2 ) descends to a

bimultiplicative map Bχ : (H/N)× (H/N) −→ Q
×
� .

(b) Let K =
{
x ∈ H/N

∣∣Bχ(x, y) = 1 ∀ y ∈ H/N
}

denote the kernel of Bχ and
write K ′ ⊂ H for the preimage of K in H. Then χ extends to a character of

K ′, and given any such extension χ′ : K ′ −→ Q
×
� , the induced representation

IndHK′ χ′ is a direct sum of copies of an irreducible representation ρχ′ of H.

(c) Let L ⊂ H/N be maximal among all subgroups of H/N with the property that
Bχ

∣∣
L×L

≡ 1, write L′ ⊂ H for the preimage of L in H (so that K ′ ⊂ L′), and

let χ′ : K ′ −→ Q
×
� be as in part (b). Then χ′ extends to a character of L′, and

given any such extension χ̃′ : L′ −→ Q
×
� , we have ρχ′ ∼= IndHL′ χ̃′.

6.4. Proof of Proposition 6.1.4. Write U>n/2 ⊂ Un,q for the subgroup consist-
ing of elements of the form 1 +

∑
n/2<j≤n ajej . This is a normal abelian subgroup

of Un,q, which is contained in Hm. We first establish the following lemma.

Lemma 6.4.1. The normalizer in Un,q(Fqn) of the character

ψ̃
∣∣
U>n/2(Fqn )

: U>n/2(Fqn) −→ Q
×
�

is equal to H+
m(Fqn).

Proof. First let us check that H+
m(Fqn) does normalize ψ̃

∣∣
U>n/2(Fqn). If m is odd

or n1 is even, then H+
m = Hm, so there is nothing to do. Suppose that m is even

and n1 is odd. It is enough to show that any element of the form g = 1+an/2en/2 ∈
Un,q(Fqn) normalizes ψ̃

∣∣
U>n/2(Fqn). But in fact, g centralizes U>n/2(Fqn).

Now, to obtain a contradiction, assume that there exists an element g ∈ Un,q(Fqn)

such that g �∈ H+
m(Fqn) and g normalizes ψ̃

∣∣
U>n/2(Fqn). Write g = 1 +

∑n
j=1 ajej

and let k be the smallest integer such that ak �= 0 and m � k. Then k < n/2.
Multiplying g by a suitable element of Un1,q1(Fqn) on the right, we may assume

that aj = 0 for all 1 ≤ j < k. Next consider the subgroup of U>n/2(Fqn) consisting
of all elements of the form 1 + cn−ken−k + cnen. By assumption, we have

ψ(cn) = ψ̃(1 + cn−ken−k + cnen)

= ψ̃
(
g · (1 + cn−ken−k + cnen) · g−1

)
= ψ̃

(
1 + cn−ken−k + (cn + akc

qk

n−k − cn−ka
qn−k

k )en
)

= ψ
(
cn + akc

qk

n−k − cn−ka
qn−k

k

)
= ψ(an) · ψ

(
akc

qk

n−k − cn−ka
qn−k

k

)
.

We see that ψ
(
akc

qk

n−k − cn−ka
qn−k

k

)
= 1 for all cn−k ∈ Fqn . We claim that

this is a contradiction. Indeed, as in Section 6.2, choose b ∈ Fqn with ψ(x) =
ψ0

(
TrFqn/Fp

(bx)
)
for all x ∈ Fqn . Then the computation from Section 6.2 shows

that

ψ
(
akc

qk

n−k − cn−ka
qn−k

k

)
= ψ0

(
TrFqn/Fp

(
cq

−(n−k)

n−k · ak · (b− bq
k

)
))

,

and since bq
k �= b and ak �= 0, the right hand side cannot be 1 for all cn−k ∈ Fqn . �

We proceed with the proof of Proposition 6.1.4. If m is odd or n1 is even, then

by Lemma 6.4.1, the normalizer in Un,q(Fqn) of ψ̃
∣∣
U>n/2(Fqn )

is equal to Hm(Fqn),
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so applying Lemma 6.3.1 to Γ = Un,q(Fqn), N = U>n/2(Fqn), and χ = ψ̃
∣∣
U>n/2(Fqn )

implies that Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃) is irreducible, proving part (a) of the proposition.

Next assume that m is even and n1 is odd. Let us apply Lemma 6.3.2 to the
group H = H+

m(Fqn), the normal subgroup N = Hm(Fqn) of H, and the character

χ = ψ̃. By Lemma 6.4.1, ψ̃ is invariant under H+
m(Fqn)-conjugation. The quotient

H+
m(Fqn)/Hm(Fqn) can be naturally identified with the additive group of Fqn . To

calculate the induced “commutator pairing”

B
˜ψ :

(
H+

m(Fqn)/Hm(Fqn)
)
×

(
H+

m(Fqn)/Hm(Fqn)
)
−→ Q

×
� ,

we observe that if g = 1 + xen/2 and h = 1 + yen/2 with x, y ∈ Fqn , then

ghg−1h−1 = 1 +
(
x · yqn/2 − y · xqn/2) · en,

whence B
˜ψ can be identified with the pairing

(6.4.1) Fqn × Fqn −→ Q
×
� , (x, y) 	−→ ψ

(
x · yqn/2 − y · xqn/2)

.

Lemma 6.4.2. The pairing (6.4.1) is nondegenerate, and the additive subgroup
Fqn/2 ⊂ Fqn is maximal isotropic with respect to it.

Proof. It is clear that Fqn/2 is isotropic with respect to (6.4.1). If we show that
(6.4.1) is nondegenerate, then the maximality will follow from the fact that #Fqn/2 =√
#Fqn . To this end, as in Section 6.2, choose b ∈ Fqn such that ψ(x) = ψ0

(
TrFqn/Fp

(bx)
)
for all x ∈ Fqn . Assume that y ∈ Fqn is such that ψ

(
x · yqn/2 − y · xqn/2)

= 1

for all x ∈ Fqn . Then ψ0

(
TrFqn/Fp

(
b ·x ·yqn/2 −bq

n/2 ·yqn/2 ·x
))

= 1 for all x ∈ Fqn ,

where we used the identities bq
−n/2

= bq
n/2

, yq
−n/2

= yq
n/2

and the fact that

TrFqn/Fp
(zq

n/2

) = TrFqn/Fp
(z) for all z ∈ Fqn . This forces (b − bq

n/2

) · yqn/2

= 0.

Since ψ has conductor qm and m does not divide n/2 by assumption, we have

b �= bq
n/2

, whence y = 0, as needed. �

Now we complete the proof of Proposition 6.1.4(b). Note that the subgroup
Γm equals the preimage of Fqn/2 ⊂ Fqn = H+

m(Fqn)/Hm(Fqn) in H+
m(Fqn). By

Lemmas 6.3.2 and 6.4.2, Ind
H+

m(Fqn )

Hm(Fqn )(ψ̃) is a direct sum of qn/2 copies of a single ir-

reducible representation ρ of H+
m(Fqn). Moreover, ψ̃ can be extended to a character

of Γm, and if χ is any such extension, then ρ ∼= Ind
H+

m(Fqn )
Γm

(χ). We see that

ρψ := Ind
Un,q(Fqn )
Γm

(χ) ∼= Ind
Un,q(Fqn )

H+
m(Fqn )

(ρ)

is independent of the choice of χ, and

Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃) ∼= Ind
Un,q(Fqn )

H+
m(Fqn )

Ind
H+

m(Fqn )

Hm(Fqn )(ψ̃)

is isomorphic to a direct sum of qn/2 copies of ρψ, completing the proof.

6.5. Proof of Proposition 6.1.5. As explained in Remark 4.4.5, we identify
Un1,q1 with the subgroup of Un,q consisting of all elements of the form 1+

∑
m|j ajej .
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6.5.1. Auxiliary notation. Let I ′ denote the set of integers j such that n/2 < j < n
and m � j. Put I = I ′ ∪ {n} and J = {1, 2, . . . , n} \ I. Then we can write

H−
m =

{
1 +

∑
i∈I

aiei

}
⊂ Un,q,

and we can identify Un,q/H−
m with an affine space Ad of dimension

d := #J =

{
n+n1

2 − 1 if m is odd or n1 is even,
n+n1+1

2 − 1 if m is even and n1 is odd.

We will denote the coordinates of this affine space by (aj)j∈J .

6.5.2. A reformulation of Proposition 6.1.5. The morphism

s : Ad −→ Un,q , (aj)j∈J 	−→ 1 +
∑
j∈J

ajej

is a section of the quotient map Un,q −→ Un,q/H−
m. Define

F : Ad ×H−
m −→ Un,q via (x, h) 	→ Frqn(s(x))hs(x)

−1,

write Lψ for the Artin-Scherier local system on Ga defined by the character ψ, and
let p̃rn : Ad×H−

m −→ Ga be the composition of the second projection Ad×H−
m −→

H−
m with prn : H−

m −→ Ga. By [2, Proposition 2.3], we have

(6.5.1) HomUn,q(Fqn )

(
ξψ, H

•
c (X,Q�)

) ∼= H•
c

(
F−1(Y ), p̃r∗nLψ

∣∣
F−1(Y )

)
as graded vector spaces with an action of Frqn .

Now note that if h = 1 +
∑

i∈I aiei ∈ H−
m and we put h◦ := 1 +

∑
i∈I\{n} aiei,

then for any g1, g2 ∈ Un,q, we have prn(g1hg2) = an + prn(g1h
◦g2). In particular,

for any x ∈ Ad, we have prn
(
F (x, h)

)
= an + prn

(
F (x, h◦)

)
. This implies that the

map

Ad ×H−
m −→ Ad × (H−

m ∩ Y ), (x, h) 	−→ (x, h◦)

(which is the projection onto the first n − 1 coordinates) yields an isomorphism
between F−1(Y ) ⊂ Ad×H−

m and Ad×(H−
m∩Y ). Under this isomorphism, the local

system p̃r∗nLψ

∣∣
F−1(Y )

corresponds to the local system α∗(Lψ) on Ad × (H−
m ∩ Y ),

where α : Ad × (H−
m ∩ Y ) −→ Ga is given by α(x, h) = −prn

(
Frqn(s(x))hs(x)

−1
)
.

So in view of (6.5.1), Proposition 6.1.5 is equivalent to the following assertions:

(6.5.2) Hr
c

(
Ad × (H−

m ∩ Y ), α∗(Lψ)
)
= 0 if r �= n+ n1 − 2;

dimHn+n1−2
c

(
Ad × (H−

m ∩ Y ), α∗(Lψ)
)
=

=

{
1 if m is odd or n1 is even,

qn/2 if m is even and n1 is odd;

(6.5.3)

Frqn acts on dimHn+n1−2
c

(
Ad × (H−

m ∩ Y ), α∗(Lψ)
)

as multiplication by the scalar (−1)n−n1 · qn(n+n1−2)/2.
(6.5.4)
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6.5.3. Additional notation. There are n − d − 1 integers j such that n > j > n/2
and m � j. Let us label them as follows: j1 > j2 > · · · > jn−d−1. Thus I = {n}∪I◦,
where I◦ = {j1, j2, . . . , jn−d−1}, and J = {m, 2m, . . . , (n1 − 1)m} ∪ J◦, where

J◦ =

{
{n− j1, . . . , n− jn−d−1} if m is odd or n1 is even,

{n− j1, . . . , n− jn−d−1, n/2} if m is even and n1 is odd.

From now on we will identify Ad × (H−
m ∩ Y ) with the affine space An−1, whose

coordinates will be denoted by (aj)j∈J∪I◦ .

6.5.4. An inductive setup. For each 1 ≤ k ≤ n− d, put I◦k = {jk, jk+1, . . . , jn−d−1}
and Jk = {m, 2m, . . . , (n1 − 1)m} ∪ J◦

k , where

J◦
k =

{
{n− jk, . . . , n− jn−d−1} if m is odd or n1 is even,

{n− jk, . . . , n− jn−d−1, n/2} if m is even and n1 is odd.

In particular, I◦1 = I◦, J◦
1 = J◦, I◦n−d = ∅, J◦

n−d = ∅ if m is odd or n1 is
even, and J◦

n−d = {n/2} if m is even and n1 is odd. Observe also that for each
1 ≤ k ≤ n−d−1, the set I◦k+1 (respectively, Jk+1) is obtained from I◦k (respectively,
Jk) by removing jk (respectively, n− jk).

We write An−2k+1 for the (n − 2k + 1)-dimensional affine space, whose coor-
dinates will be denoted by (aj)j∈Jk∪I◦

k
. If 1 ≤ k ≤ n − d − 1, we write pk :

An−2k+1 → An−2k−1 for the projection obtained by discarding ajk and an−jk ,
and ιk : An−2k−1 ↪→ An−2k+1 for the natural “zero section” of pk. We put
αk = α ◦ ι1 ◦ · · · ◦ ιk−1 : An−2k+1 → Ga, where α : An−1 = Ad × (H−

m ∩ Y ) −→ Ga

is the morphism introduced in Section 6.5.2. In particular, we have α1 = α.

6.5.5. The key lemma. The next result allows us to exploit the inductive setup
formulated in Section 6.5.4. Its proof is based on [2, Proposition 2.10].

Lemma 6.5.1. For each 1 ≤ k ≤ n− d− 1, we have

H•
c (A

n−2k+1, α∗
kLψ) ∼= H•

c (A
n−2k−1, α∗

k+1Lψ)[−2](−1)

as graded vector spaces with an action of Frqn .

Proof. Recall that

αk

(
(aj)j∈Jk∪I◦

k

)
= −prn

((
1 +

∑
j∈Jk

aq
n

j ej

)
·
(
1 +

∑
i∈I◦

k

aiei

)
·
(
1 +

∑
j∈Jk

ajej

)−1
)
.

The right hand side can be written as a certain sum of monomials in the variables
(aj)j∈Jk∪I◦

k
. By our choice of the ordering j1 > j2 > · · · > jn−d−1 > n/2, only two

of these monomials involve the variable ajk , namely, −aq
n

n−jk
·aq

n−jk

jk
and ajk ·a

qjk

n−jk
.

This implies that we can write

αk

(
(aj)j∈Jk∪I◦

k

)
= ajk · aq

jk

n−jk
− aq

n−jk

jk
· aq

n

n−jk

+ α̃k+1

(
(aj)j∈Jk+1∪I◦

k+1

)
+ an−jk · βk

(
(aj)j∈Jk∪I◦

k+1

)
for some polynomials α̃k+1 : An−2k−1 → Ga and βk : An−2k → Ga. Substituting
ajk = an−jk = 0 into the last identity shows that α̃k+1 = αk+1.
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We now apply [2, Proposition 2.10] in the following setting. ψ, q, and n have the
same meaning as in loc. cit. We let S2 be the affine space An−2k with coordinates
(aj)j∈Jk∪I◦

k+1
and identify S = S2 × A1 with the affine space An−2k+1, where the

additional coordinate is labeled ajk and corresponds to the coordinate y in loc. cit.
The morphism f : S2 → Ga from loc. cit. is the projection onto the coordinate
an−jk , so that the subscheme S3 ⊂ S2 introduced in loc. cit. is identified with the
affine space An−2k−1 with coordinates (aj)j∈Jk+1∪I◦

k+1
. Since m � jk, the assertion

of Lemma 6.5.1 follows at once from [2, Proposition 2.10]. �

6.5.6. Conclusion of the proof of Proposition 6.1.5. We return to the task of proving
(6.5.2)–(6.5.4). Applying Lemma 6.5.1 successively for k = 1, 2, . . . , n − d − 1, we
obtain

H•
c

(
Ad × (H−

m ∩ Y ), α∗Lψ

)
= H•

c

(
An−1, α∗Lψ

)
∼= H•

c

(
An−2(n−d)+1, α∗

n−dLψ

)
[−2(n− d− 1)](−(n− d− 1)).

(6.5.5)

Let us now calculate α∗
n−d(Lψ). Recall that the coordinates on the affine space

An−2(n−d)+1 are labeled (aj)j∈Jn−d
, where

Jn−d =

{
{m, 2m, . . . , (n1 − 1)m} if m is odd or n1 is even,

{m, 2m, . . . , (n1 − 1)m,n/2} if m is even and n1 is odd,

and

αn−d

(
(aj)j∈Jn−d

)
= −prn

((
1 +

∑
j∈Jn−d

aq
n

j ej

)
·
(
1 +

∑
j∈Jn−d

ajej

)−1
)
.

So if m is odd or n1 is even, we can naturally identify An−2(n−d)+1 with

(Un1,q1 ∩ Y ) ⊂ Un1,q1 ⊂ Un,q,

and αn−d with the map

Un1,q1 ∩ Y −→ Ga, g 	−→ −prn(Lqn(g)).

Recall that qn = qn1
1 . Applying Proposition 5.1.1 with (n, q) replaced by (n1, q1),

we find that −prn(Lqn(g)) = Nn1,q1(g) − Nn1,q1(g)q1 for all g ∈ Un1,q1 . Since
q1 = qm is the conductor of ψ, the pullback of Lψ by the map x 	→ x−xq1 is trivial.

Therefore α∗
n−d(Lψ) is the trivial local system on An−2(n−d)+1, whence

H•
c

(
An−2(n−d)+1, α∗

n−dLψ

) ∼= Q�[−2(n− 2(n− d) + 1)](−(n− 2(n− d) + 1)).

Combining this with (6.5.5) yields

H•
c

(
Ad × (H−

m ∩ Y ), α∗Lψ

) ∼= Q�[−2d](−d).

Recalling that d = (n + n1 − 2)/2 when m is odd or n1 is even, we obtain all the
desired assertions (6.5.2)–(6.5.4) in this case.

Suppose next that m is even and n1 is odd. Then we can naturally identify
An−2(n−d)+1 with (Un1,q1 ∩ Y )×Ga, where the first factor Un1,q1 ∩ Y corresponds
to the coordinates (aj)j=m,2m,...,(n1−1)m and the second factor Ga corresponds to
the coordinate an/2. Under this identification, αn−d corresponds to the map

(g, x) 	−→ −prn(Lqn(g)) + xqn+qn/2 − x1+qn/2

.
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As in the previous case, the pullback of Lψ by the map (g, x) 	→ −prn(Lqn(g))

is trivial. Since the local system Lψ is multiplicative, we see that H•
c

(
An−2(n−d)+1,

α∗
n−dLψ

)
is isomorphic to

H•
c

(
Ga, f

∗(Lψ)
)
[−2(n− 2(n− d))](−(n− 2(n− d))),

where f : Ga → Ga is given by x 	→ xqn+qn/2 − x1+qn/2

. So by (6.5.5),

(6.5.6) H•
c

(
Ad × (H−

m ∩ Y ), α∗Lψ

) ∼= H•
c

(
Ga, f

∗(Lψ)
)
[−2(d− 1)](−(d− 1)).

Now we can factor f as f = f1 ◦ f2, where f1(x) = xqn/2 − x and f2(x) = x1+qn/2

.
Thus f∗(Lψ) ∼= f∗

2 f
∗
1 (Lψ). Since f1 is a homomorphism, f∗

1 (Lψ) ∼= Lψ◦f1 is the
multiplicative local system on Ga corresponding to the character ψ ◦ f1 : Fqn −→
Q

×
� . Now since ψ has conductor qm andm � (n/2) by assumption, ψ◦f1 is nontrivial.

On the other hand, (ψ ◦ f1)
∣∣
F
qn/2

is necessarily trivial. Applying Proposition 6.6.1

below to qn/2 in place of q and ψ ◦ f1 in place of ψ, we see that

(6.5.7) dimHr
c (Ga, f

∗
2Lψ◦f1) =

{
qn/2 if r = 1,

0 otherwise,

and

(6.5.8) Frqn acts on H1
c (Ga, f

∗
2Lψ◦f1) via − qn/2.

Recalling that d = (n+ n1 − 1)/2 in the situation under consideration, we see that
all the desired assertions (6.5.2)–(6.5.4) follow in this case from (6.5.6), (6.5.7), and
(6.5.8).

6.6. An auxiliary cohomology calculation. The next result was used in
Section 6.5.

Proposition 6.6.1. Let ψ : Fq2 −→ Q
×
� be a nontrivial character such that ψ is

trivial on Fq ⊂ Fq2 , and let Lψ be the corresponding Artin-Schreier local system on
Ga over Fq2 . Write f : Ga −→ Ga for the map x 	→ xq+1. Then

dimHi
c(Ga, f

∗Lψ) =

{
q if i = 1,

0 otherwise.

Moreover, the Frobenius Frq2 acts on H1
c (Ga, f

∗Lψ) via multiplication by −q.

Proof. Since xq+1 ∈ Fq for all x ∈ Fq2 , we have the identity

(6.6.1)
∑

x∈Fq2

ψ(xq+1) = q2,

which is consistent with the assertion of the proposition in view of the Grothendieck-
Lefschetz trace formula. We will deduce the proposition from (6.6.1). To this end,
observe that if pr : Ga → SpecFq2 denotes the structure morphism, then

(6.6.2) Rpr!(f
∗Lψ) ∼= Rpr!(f!f

∗Lψ) ∼= Rpr!(Lψ ⊗ f!Q�),

where Q� is the constant rank 1 local system on Ga and in the second isomorphism
we used the projection formula.
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Lemma 6.6.2. One has

f!Q�
∼= Q� ⊕

q⊕
s=1

j!(Ms)

for certain nontrivial multiplicative local systems M1,M2, . . . ,Mq on Gm over Fq2 ,
where j : Gm ↪→ Ga denotes the inclusion map.

Before proving this lemma, let us explain why it implies the assertion of the
proposition. By the lemma and (6.6.2), we have

(6.6.3) Rpr!(f
∗Lψ) ∼= Rpr!(Lψ)⊕

q⊕
s=1

Rpr!(Lψ ⊗ j!Ms).

Now Rpr!(Lψ) = 0 because ψ is nontrivial. By [6, Proposition 4.2 in Sommes Trig.],

dimHr
c (Ga,Lψ ⊗ j!Ms) =

{
1 if r = 1,

0 otherwise,

and if λs is the scalar by which Frq2 acts on H1
c (Ga,Lψ ⊗ j!Ms), then |λs| = q.

Applying the Grothendieck-Lefschetz trace formula to (6.6.3) yields∑
x∈Fq2

ψ(xq+1) = −(λ1 + · · ·+ λq).

Comparing this with (6.6.1) and using the fact that |λs| = q for all s, we see that
λs = −q for all s, which, in view of (6.6.3), yields the proposition. �

Proof of Lemma 6.6.2. Since f−1(0) = {0}, the stalk of f!(Q�) at 0 is one-
dimensional. Since f is a finite morphism, we have f!(Q�) = f∗(Q�), and by adjunc-
tion, there is a natural map Q� −→ f∗(Q�) (coming from the natural isomorphism

f∗(Q�)
�−→ Q�), which induces an isomorphism on the stalks over 0.

Next let us calculate the restriction of f!(Q�) to Gm ⊂ Ga. To this end, consider
the restriction of f to a morphism Gm −→ Gm. Since f ′(x) = (q + 1)xq = xq,
the map f : Gm −→ Gm is étale, and in fact, it can be identified with the quo-
tient of Gm by the finite discrete4 subgroup μq+1(Fq2) ⊂ Gm of (q + 1)st roots

of unity. This means that the restriction f!(Q�)
∣∣
Gm

decomposes as a direct sum

Q� ⊕
⊕q

s=1 Ms, where the Ms are the local systems coming from the nontrivial
characters of μq+1(Fq2).

In particular, for each s, we have a map Ms ↪→ f!(Q�)
∣∣
Gm

, which by adjunction

induces a map j!Ms −→ f!(Q�). Finally, combining these maps with the map
Q� −→ f!(Q�) constructed in the first paragraph of the proof, we obtain a map

Q� ⊕
q⊕

s=1

j!(Ms) −→ f!(Q�).

By looking at the stalks, one sees that this map is an isomorphism. �

4Observe that all the (q + 1)st roots of unity already lie in Fq2 .
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6.7. The Lang torsor. This subsection contains background material for the proof
of Proposition 6.1.6. Let G be a connected algebraic group over Fq. The Lang
isogeny Lq : G → G, given by Lq(g) = Frq(g) · g−1, identifies G with the quotient
of G by the right multiplication action of the finite discrete group G(Fq). We will
view G as a right G(Fq)-torsor over itself by means of Lq, which we will call the
“Lang torsor.”

If ρ is a representation of G(Fq) over Q�, we denote by Eρ the Q�-local system
associated to the Lang torsor by means of ρ. For the definition of Eρ, see [6, Sections
1.2 and 1.22 in Sommes Trig.]; note that Eρ is denoted by F(ρ) in loc. cit.

Proposition 6.7.1. Let Ĝ(Fq) be a set of representatives of the isomorphism

classes of all irreducible representations of G(Fq) over Q�. Then

(6.7.1) Lq!(Q�) ∼=
⊕

ρ∈Ĝ(Fq)

ρ⊗ Eρ

as local systems with an action of G(Fq), where Q� is the constant sheaf on G and

the action of G(Fq) on the pushforward Lq!(Q�) = Lq∗(Q�) comes from the right
multiplication action of G(Fq) on G.

We remark that in formula (6.7.1), the action of G(Fq) on each of the summands
ρ⊗ Eρ comes only from the action of G(Fq) on ρ.

Corollary 6.7.2. Let Y ⊂ G be an Fq-subvariety and put X = L−1
q (Y ). Then

(6.7.2) HomG(Fq)

(
ρ,Hi

c(X,Q�)
) ∼= Hi

c

(
Y, Eρ

∣∣
Y

)
as vector spaces with an action of Frq, for any i ∈ Z and any representation ρ

of G(Fq) over Q�, where the action of G(Fq) on Hi
c(X,Q�) comes from the right

multiplication action of G(Fq) on X.

Proof. We have Hi
c(X,Q�) ∼= Hi

c

(
Y, Lq!(Q�)

∣∣
Y

)
by the proper base change theorem.

Both sides of (6.7.2) are additive with respect to ρ, so it suffices to prove it when
ρ is irreducible. In that case (6.7.2) follows from (6.7.1). �

If X is a scheme of finite type over Fq and F is a constructible �-adic sheaf (for

example, a Q�-local system) on X, we denote the corresponding trace of Frobenius
function by tF : X(Fq) → Q�. The next result is [6, Section 1.23 in Sommes Trig.].

Proposition 6.7.3. Given γ ∈ G(Fq), choose any g ∈ G(Fq) with γ = Lq(g).
Then g−1 · Frq(g) ∈ G(Fq) and tEρ

(γ) = tr(ρ(g−1 · Frq(g))).
We will also need Proposition 6.7.4.

Proposition 6.7.4. Let H ⊂ G be a connected algebraic subgroup and assume that
the quotient map G → G/H has a section s : G/H → G defined over Fq. Let η be

a representation of H(Fq) over Q�, put ρ = Ind
G(Fq)

H(Fq)
η, and write Eη (respectively,

Eρ) for the Q�-local system on H (respectively, on G) coming from the Lang isogeny
for H (respectively, for G) via η (respectively, via ρ), as above. Then

(6.7.3) tEρ
= ind

G(Fq)

H(Fq)
tEη

,

where ind
G(Fq)

H(Fq)
denotes the induction map from conjugation-invariant functions on

H(Fq) to conjugation-invariant functions on G(Fq).



224 MITYA BOYARCHENKO AND JARED WEINSTEIN

Remark 6.7.5. In general, tEρ
is not equal to the character of the representation ρ,

so formula (6.7.3) is not evident. However, by [6, Lemma 1.24 in Sommes trig.],
tEη

is a conjugation-invariant function on H(Fq), so formula (6.7.3) makes sense.

Proof. Write pr2 : (G/H) × H → H for the second projection and define F :
(G/H)×H → G by F (x, h) = Frq(s(x)) · h · s(x)−1. Then Eρ ∼= F!(pr

∗
2Eη) by the

argument used in [2, Section 6.2]. The Grothendieck-Lefschetz trace formula yields

tEρ
(g) =

∑
(x,h)∈(G/H)(Fq)×H(Fq)

F (x,h)=g

tEη
(h) ∀ g ∈ G(Fq).

Now if x ∈ (G/H)(Fq), then F (x, h) = s(x)hs(x)−1 for all h. Moreover, since G

and H are both connected, we obtain G(Fq)/H(Fq)
�−→ (G/H)(Fq), so as x ranges

over (G/H)(Fq), we see that s(x) ranges over a set of representatives of the left

cosets of H(Fq) in G(Fq). Recalling the definition of the map ind
G(Fq)

H(Fq)
, we obtain

(6.7.3). �

6.8. Proof of Proposition 6.1.6. Recall that ψ̃ : Hm(Fqn) → Q
×
� is the character

defined by ψ̃ = ψ1 ◦Nmn1,q1 ◦νm (see Section 6.1). In view of the last statements of
parts (a) and (b) of Proposition 6.1.4, the assertion of Proposition 6.1.6 is equivalent
to

HomUn,q(Fqn )

(
Ind

Un,q(Fqn )

Hm(Fqn ) (ψ̃), H•
c (X,Q�)

)
�= 0.

Let E
˜ψ be the local system onHm coming from the Lang isogeny Lqn : Hm → Hm

via ψ̃. We simply write E for the local system on Un,q coming from the Lang isogeny

Lqn : Un,q −→ Un,q via Ind
Un,q(Fqn )

Hm(Fqn ) (ψ̃). By Corollary 6.7.2, we have

HomUn,q(Fqn )

(
Ind

Un,q(Fqn )

Hm(Fqn ) (ψ̃), H•
c (X,Q�)

)
∼= H•

c

(
Y, E

∣∣
Y

)
.

So in order to show that the left hand side is nonzero, it suffices (by the Grothendieck-
Lefschetz trace formula) to check that

(6.8.1)
∑

y∈Y (Fqn )

tE(y) �= 0.

Now by Proposition 6.7.4,

(6.8.2) tE = ind
Un,q(Fqn )

Hm(Fqn ) (tE
˜ψ
).

To compute the right hand side of the last identity, we use Lemma 6.8.1.

Lemma 6.8.1. We have5 tE
˜ψ
= ψ ◦ prn : Hm(Fqn) −→ Q

×
� .

Proof. The projection νm : Hm −→ Un1,q1 obtained by discarding all summands
ajej with m � j is an algebraic group homomorphism (cf. Remark 4.4.5), whose
kernel is equal to H−

m ∩ Y . Moreover, if we view Un1,q1 as a subgroup of Un,q as
explained earlier, then Un1,q1 ⊂ H−

m and νm restricts to the identity on Un1,q1 . So
we obtain a semidirect product decomposition Hm = Un1,q1 � (H−

m ∩ Y ).

5We point out that in general, ψ̃ �= ψ ◦ prn on Hm(Fqn) and ψ ◦ prn : Hm(Fqn ) → Q
×
� is not

a group homomorphism.
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Now to calculate the function tE
˜ψ
: Hm(Fqn) −→ Q

×
� we use Proposition 6.7.3.

Fix γ ∈ Hm(Fqn) and choose g ∈ Hm(Fqn) with Lqn(g) = γ. Write g = g1 · h for

uniquely determined g1 ∈ Un1,q1(Fqn) and h ∈ (H−
m ∩ Y )(Fqn). Then

νm(g−1 · Frqn(g)) = νm(h−1 · g−1
1 · Frqn(g1) · Frqn(h)) = g−1

1 · Frqn(g1)
because νm is an algebraic group homomorphism, so by Proposition 6.7.3,

tE
˜ψ
(γ) = ψ̃(g−1 · Frqn(g)) = ψ1(Nmn1,q1(g−1

1 · Frqn(g1))).

Now g−1
1 · Frqn(g1) ∈ Un1,q1(Fqn) and Frqn(g1) = g1 ·

(
g−1
1 · Frqn(g1)

)
. Applying

Proposition 5.1.1 to the reduced norm morphism Nn1,q1 : Un1,q1 → Ga, we obtain

Nmn1,q1(g−1
1 · Frqn(g1)) = Nn1,q1(Frqn(g1))−Nn1,q1(g1)

= TrFqn/Fq1
(prn(Lqn(g1))),

where in the last step we used Corollary 5.1.3. Here we note that Lqn(g1) ∈
Un1,q1(Fqn) because Lqn(g1) = νm(γ). Now prn(Lqn(g1)) = prn(γ), so we finally
obtain

tE
˜ψ
(γ) = ψ1

(
TrFqn/Fq1

(prn(Lqn(g1)))
)
= ψ(prn(γ)),

which completes the proof of Lemma 6.8.1. �

Let us now verify (6.8.1). By (6.8.2) and Lemma 6.8.1,

tE = ind
Un,q(Fqn )

Hm(Fqn ) (ψ ◦ prn),

so if {gi}i∈I are representatives of all the left cosets of Hm(Fqn) in Un,q(Fqn), then

(6.8.3)
∑

y∈Y (Fqn )

tE(y) =
∑
i∈I

∑
y∈Y (Fqn )∩(gi·Hm(Fqn )·g−1

i )

ψ(prn(g
−1
i ygi)).

We will show that the right hand side is a strictly positive integer. To this end,
consider a new group operation on Un,q, which we denote by � and define by(

1 +

n∑
j=1

ajej

)
�

(
1 +

n∑
j=1

bjej

)
= 1 +

n∑
j=1

(aj + bj)ej .

For any g ∈ Un,q , the map x 	→ gxg−1 is a homomorphism with respect to � (where
we denote the old group operation on Un,q multiplicatively, as usual), as is the map
prn : Un,q −→ Ga. Hence for each i ∈ I, the subset

Y (Fqn) ∩ (gi ·Hm(Fqn) · g−1
i ) ⊂ Un,q(Fqn)

is a subgroup with respect to �, and the map y 	→ ψ(prn(g
−1
i ygi)) is a character

of this subgroup. Therefore the ith summand,∑
y∈Y (Fqn )∩(gi·Hm(Fqn )·g−1

i )

ψ(prn(g
−1
i ygi)),

is equal to either 0 or the order of Y (Fqn)∩ (gi ·Hm(Fqn) · g−1
i ), which is a positive

integer. Finally note that there is an i0 ∈ I for which gi0 ∈ Hm(Fqn). Then the

corresponding character y 	→ ψ(prn(g
−1
i0

ygi0)) of Y (Fqn) ∩ (gi0 ·Hm(Fqn) · g−1
i0

) =

Y (Fqn) ∩Hm(Fqn) is equal to y 	→ ψ(prn(y)) ≡ ψ(0) = 1 because Y = pr−1
n (0). So

the summand corresponding to i = i0 in (6.8.3) is positive, which yields (6.8.1).
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Part 3. Geometric realization of the correspondences

7. Notation and constructions

7.1. Assumptions and terminology. In this section we state the last main result
of the article, Theorem C, which provides a bridge between Theorems A and B
from the Introduction. For convenience, we begin by briefly reviewing the notation
introduced earlier in the article, which will be used in the current part.

We work with a local nonarchimedean field K with residue field Fq and integers
m,n ≥ 1. We fix a uniformizer 
 ∈ OK , an unramified extension L ⊃ K of
degree n, and a central division algebra D over K with invariant 1/n. We also
fix a K-algebra embedding L ⊂ D. There exists a uniformizer Π ∈ OD such that
Πn = 
 and ΠaΠ−1 = ϕ(a) for all a ∈ L, where ϕ ∈ Gal(L/K) is the (arithmetic)
Frobenius.

We assume that the matrix algebraMn(K) is identified with the algebra EndK(L)
of K-vector space endomorphisms of L by means of choosing a basis of OL as an
OK-module. This determines a K-algebra embedding L ⊂ Mn(K). We write
G = GLn(K) and identify it with the group of K-vector space automorphisms of
L whenever convenient. In particular, we view Gal(L/K) as a subgroup of G.

The groups L×, G,D× have natural filtrations by principal congruence sub-
groups, which we denote by Ur

L, Ur
G, and Ur

D, respectively, where r ≥ 1. We
have Ur

L = 1 + prL = 1 + 
rOL, where pL ⊂ OL denotes the maximal ideal,
Ur
G = 1+
rMn(OK) and Ur

D = 1+ΠrOD, where OD ⊂ D is the unique maximal
OK-order.

We will say that a character θ : L× → Q
×
� is primitive of conductor r ≥ 2 if

θ
∣∣
Ur

L

≡ 1 and θ
∣∣
Ur−1

L

has a trivial stabilizer in Gal(L/K).

7.2. Auxiliary groups. In Section 3.4 we introduced a unipotent group6 U de-
fined over Fqn and a smooth hypersurface X ⊂ U. As in Part 1, we will write

XFq
= X ⊗Fqn

Fq. In Theorem 3.6.1 we described a right action of a certain sub-

group J ⊂ G × D× × WK on Xperf

Fq
. In the next few subsections we reformulate

the definition of J and its action on Xperf

Fq
in a slightly different way, which is more

suitable for the proof of Theorem C. Consider the subgroups

Jm
G = 1 + p

m
L + p

�m/2�
L C◦

1 ⊂ G, Jm
D = 1 + p

m
L + p

�m/2�
L C◦

2 ⊂ D×

(we remark that �m/2� = �(m−1)/2�), where C◦
1 = C1∩Mn(OK), C◦

2 = C2∩OD,
and C1 ⊂ Mn(K) (resp. C2 ⊂ D) is the orthogonal complement of L with respect
to the trace pairing (resp. the reduced trace pairing).

With this notation, L× = Δ(O×
L ) · (Jm

G × Jm
D ), where L is the linking order

introduced in Section 3.3 and Δ : L× ↪→ G×D× is the diagonal embedding. Now
define

diag1,2 : L× ↪→ G×D× ×WK , α 	−→ (α, α, 1),

and let J0 = diag1,2(L
×) · (Jm

G × Jm
D × {1}). This is a subgroup of G×D× ×WK

because L× normalizes Jm
G and Jm

D . With the notation of Part 1, J0 is the subgroup

6In Part 2, U was denoted by Un,q to make the dependence on n and q explicit; since n and
q are fixed throughout the present part, we omit them to simplify the notation.
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of G×D× ×WK generated by L× × {1} and the (central) subgroup consisting of
elements of the form (α, α, 1), where α ∈ K×.

7.3. The subgroup J . We write j1 : WK → G for the composition of the natural
surjective homomorphism WK → Gal(L/K) with the inclusion Gal(L/K) ↪→ G.
Whenever convenient, we will also view j1 as a homomorphism WL/K → G, where

WL/K = WK/[WL,WL] is the relative Weil group of L over K.

Recall also that there is a group isomorphism j2 : WL/K
�−→ ND×(L×) that on

the subgroup Wab
L = WL/[WL,WL] restricts to the inverse of the local class field

theory isomorphism recL : L× �−→ Wab
L , where ND×(L×) denotes the normalizer

of L× in D×. We can also view j2 as a homomorphism WK → D×.

Let W ⊂ G×D× ×WK be the subgroup consisting of all elements of the form
(j1(w), j2(w), w), where w ∈ WK . This subgroup normalizes both diag1,2(L

×) and
Jm
G × Jm

D × {1}, whence it also normalizes J0. The product W · J0 is an open
subgroup of G × D× × WK , which can be identified with a semidirect product
WK � J0 for the obvious action of WK on J0. It is straightforward to check that
W ·J0 = J , where J ⊂ G×D××WK is the subgroup appearing in Theorem 3.6.1.

7.4. The action of J on Xperf

Fq
. Recall from Section 3.4 that the variety X can

already be defined over Fq ⊂ Fqn , so that X = X0 ⊗Fq
Fqn and XFq

= X0 ⊗Fq
Fq.

The group U(Fqn) acts on X by right multiplication; the resulting representations

of U(Fqn) in Hi
c(XFq

,Q�) were calculated in Part 2. The right action of J on Xperf

Fq
,

which was constructed in Theorem 3.6.1, is determined uniquely by the following
four rules. The first one describes the action of Jm

G × Jm
D × {1}, the second one

describes the action of diag1,2(L
×), and the third and fourth ones describe the

action of W .

7.4.1. Let Z denote the center of U, as in Part 2; then Z(Fqn) is equal to the
center of U(Fqn), and Z(Fqn) can be naturally identified with the additive group of
Fqn . If m is odd, there is a natural surjective homomorphism Jm

D → U(Fqn) which

induces an isomorphism Jm
D /Jm+1

D
�−→ U(Fqn) (cf. the proof of Lemma 3.3.1),

and the natural projection Jm
G → 1 + pmL induces a surjective homomorphism

Jm
G → Um

L /Um+1
L

∼= Fqn
∼= Z(Fqn). Similarly, if m is even, we have natural

surjections Jm
G → U(Fqn) and Jm

D → Z(Fqn). In both cases, we obtain a surjective
homomorphism Jm

G × Jm
D → U(Fqn)× Z(Fqn), which determines a right action of

the group Jm
G × Jm

D × {1} on Xperf

Fq
as follows: U(Fqn) acts by right multiplication

and Z(Fqn) acts via z : x 	→ x · z−1 for any z ∈ Z(Fqn).

7.4.2. If α ∈ K×, then (α, α, 1) ∈ diag1,2(L
×) acts trivially on Xperf

Fq
. If α ∈ O×

L ,

then (α, α, 1) acts on Xperf

Fq
via x 	→ α−1xα, where α denotes the image of α in

O×
L /U

1
L
∼= F×

qn (the conjugation action of F×
qn on XFq

comes from viewing XFq
as a

subvariety of R×
Fq

and identifying F×
qn with a subgroup of R×(Fqn) as in Sections 4.4

and 5.4).
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7.4.3. If w ∈ [WL,WL] ⊂ WK , the element (j1(w), j2(w), w) = (1, 1, w) ∈ W acts

trivially onXperf

Fq
, so from now on we formG×D××WL/K , identified with a quotient

of G×D× ×WK in the obvious way, and (whenever convenient) use the notation
J0,W,J for the images of these groups in G ×D× ×WL/K (by a slight abuse of

notation). With this in mind, the action of W ∼= WL/K on Xperf

Fq
is characterized

as follows. If α ∈ O×
L , then (1, α, recL(α)) acts on Xperf

Fq
via x 	→ α−1xα when m is

odd, and (1, α, recL(α)) acts on Xperf

Fq
trivially when m is even.

7.4.4. If Φ ∈ WL/K is the element determined by the equality j2(Φ) = Π, the

action of (j1(Φ), j2(Φ),Φ) on Xperf

Fq
= (X0⊗Fq

Fq)
perf comes from the automorphism

idX0
⊗ϕ−1

q of X0 ⊗Fq
Fq, where ϕq : Fq → Fq is the Frobenius substitution a 	→ aq.

Since WL/K is the semidirect product of the cyclic group generated by Φ and the

subgroup recL(O×
L ), these formulas uniquely determine a right action of W on

Xperf

Fq
.

7.5. Formulation of the main result. The right action of J on Xperf

Fq
yields

a (smooth) representation of J in the vector space Hn−1
c (Xperf

Fq
,Q�). The natu-

ral morphism Xperf

Fq
→ XFq

induces an isomorphism between Hn−1
c (XFq

,Q�) and

Hn−1
c (Xperf

Fq
,Q�), which we use to tacitly identify the two spaces. In particular, we

let Hn−1 denote the resulting representation of J in Hn−1
c (XFq

,Q�); this will allow

us to write XFq
instead of Xperf

Fq
in all that follows.

Remarks 7.5.1. (1) Recall that with the conventions of Part 2 (see Remarks 4.2.1),
the underlying vector space of Hn−1

c (X,Q�) is equal to Hn−1
c (XFq

,Q�). Thus

Theorem 4.5.1 gives us a description of Hn−1
c (XFq

,Q�) as a representation of

U(Fqn).

(2) If Frq is the endomorphism of XFq
= X0 ⊗Fq

Fq induced by the absolute

Frobenius on X0, then the actions of Frq and idX0
⊗ϕ−1

q on H•
c (XFq

,Q�)

coincide. Hence if Φ ∈ WL/K is the element such that j2(Φ) = Π, then

by Theorem 4.5.1(b), (j1(Φ), j2(Φ),Φ)
n acts on Hn−1

c (XFq
,Q�) via the scalar

(−1)n−1qn(n−1)/2.

The next result is proved in Section 8. In Section 9 we use it to prove Theorem A.

Theorem C. Let π, ρ, and σ be smooth irreducible representations of G,D×, and
WK , respectively. The following two conditions are equivalent:

(i) HomJ
(
π ⊗ ρ⊗ σ

∣∣
J ,Hn−1

)
�= 0;

(ii) π corresponds to ρ∨ under the local Jacquet-Langlands correspondence, and
to the twist σ

(
n−1
2

)
under the local Langlands correspondence, and there is a

primitive character θ : L× → Q
×
� of conductor m + 1 such that σ ∼= σθ =

IndL/K θ.

Moreover, if these conditions hold, then dimHomJ
(
π ⊗ ρ⊗ σ

∣∣
J ,Hn−1

)
= 1.
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Explicitly, σ
(
n−1
2

)
is the twist of σ by the character of WK coming from

|·|(n−1)/2 ◦ rec−1
K : Wab

K −→ K× −→ Q
×
� ,

where |·| is the normalized absolute value on K, so that |
| = q−1. The apparent
dependence of this twist on the choice of

√
q ∈ Q� when n is even is explained as

follows: if ε : K× −→ Q
×
� is a character whose kernel equals NL/K(L×), then for

even n, we have εn/2(
) = −1 and εn/2
∣∣
O×

K

≡ 1, and σθ is invariant under twisting

by ε ◦ rec−1
K (hence also by εn/2 ◦ rec−1

K ).

8. Proof of Theorem C

8.1. Outline. We first introduce some notation and formulate two auxiliary re-
sults that will be used in the proof of Theorem C. The proof is given in the next
subsection, and the auxiliary results are proved in the remainder of this section.

The main ingredients in the proof of Theorem C are Theorem 4.5.1 from Part
2 and some results of Kazhdan and Henniart on the local Langlands and Jacquet-
Langlands correspondences [12, 13, 16]. The results of Henniart on which we rely
were restated in a form suited for our purposes in the article [4]. However, the
portion of the latter article on which the current one depends is rather small: most
of op. cit. was devoted to background from p-adic representation theory and to
the proof of a special case of Theorem 4.5.1, namely, [4, Theorem 2.9]. The full
strength of Theorem 4.5.1 is needed for Theorem C, and the proof of Theorem 4.5.1
that we gave in Part 2 is independent of op. cit.

8.1.1. As we remarked earlier, the subgroup

{1} × {1} × [WL,WL] ⊂ J ⊂ G×D× ×WK

acts trivially on XFq
. Therefore without loss of generality we can replace WK with

its quotient WL/K throughout the proof of the theorem. As before, by a slight

abuse of notation, we also use the letter J for the image of J in G×D× ×WL/K .

The representation σθ = IndL/K θ is also trivial on [WL,WL], so from now on we

will view σθ as a representation of WL/K . Explicitly, σθ = Ind
WL/K

Wab
L

(θ ◦ rec−1
L ).

8.1.2. Recall that the isomorphism j2 : WL/K
�−→ ND×(L×) used in Section 7.3

restricts to rec−1
L : Wab

L
�−→ L×. We introduce the homomorphism

diag2,3 : L× −→ G×D× ×WL/K , α 	→ (1, α, j−1
2 (α))

and consider the normal subgroup of index n

J1 := diag1,2(L
×) · (Jm

G × Jm
D × {1}) · diag2,3(L×) ⊂ J .

We remark that J1 can also be viewed as a subgroup of G×D× ×Wab
L . For each

character ψ : Fqn → Q
×
� with trivial Gal(Fqn/Fq)-stabilizer, let Hn−1[ψ] ⊂ Hn−1

denote the subspace on which Z(Fqn) ∼= Fqn acts via ψ. (As in Part 2, the action of

Z(Fqn) ⊂ U(Fqn) on Hn−1 = Hn−1
c (XFq

,Q�) comes from the right multiplication

action of U(Fqn) on XFq
.)
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Lemma 8.1.1. (a) If ψ : Fqn → Q
×
� is a character with trivial Gal(Fqn/Fq)-

stabilizer, then Hn−1[ψ] is stable under J1 and is irreducible as a representation
of J1.

(b) We have Hn−1 =
⊕

Hn−1[ψ], the sum ranging over all characters ψ : Fqn →
Q

×
� with trivial Gal(Fqn/Fq)-stabilizer.

Proof. The action of Z(Fqn) on XFq
commutes with the action of J1, so Hn−1 is

stable under J1. By Theorem 4.5.1, the characters of Z(Fqn) ∼= Fqn that have
nontrivial Gal(Fqn/Fq)-stabilizer do not appear in Hn−1 (they appear in higher
cohomological degrees), which yields assertion (b). Theorem 4.5.1 also implies that
Hn−1[ψ] is already irreducible as a representation of U(Fqn). Since J1 contains a
subgroup J2 ⊂ J1 whose action on XFq

comes from the right multiplication action

of U(Fqn) on XFq
via a surjective homomorphism J2 → U(Fqn), assertion (a)

follows. (We have J2 = Jm
G × {1} × {1} if m is even and J2 = {1} × Jm

D × {1} if
m is odd.) �

8.1.3. The first key step of the proof of Theorem C is

Proposition 8.1.2. Let π, ρ, σ be smooth irreducible representations of G,D×,
WL/K .

(a) If HomJ
(
π ⊗ ρ⊗ σ

∣∣
J ,Hn−1

)
�= 0, there is a primitive character θ : L× → Q

×
�

of conductor m+ 1 such that σ ∼= σθ = Ind
WL/K

Wab
L

(θ ◦ rec−1
L ).

(b) If there is a primitive character θ : L× → Q
×
� of conductor m + 1 such that

σ ∼= σθ, then there exists a natural vector space isomorphism

(8.1.1) HomJ
(
π ⊗ ρ⊗ σ

∣∣
J ,Hn−1

) ∼= HomJ1

(
π ⊗ ρ⊗ (θ ◦ rec−1

L )
∣∣
J1
,Hn−1[ψ±1]

)
,

where ψ : Fqn → Q
×
� comes from θ

∣∣
Um

L

via the identification Um
L /Um+1

L
∼= Fqn

and the sign ±1 is equal to (−1)m.

This proposition is proved in Section 8.3. We see that to complete the proof of
Theorem C it suffices to show that the right hand side of (8.1.1) is one-dimensional
whenever it is nonzero, and to identify those pairs (π, ρ) for which it is nonzero

(for a given primitive character θ : L× → Q
×
� of conductor m + 1). We will now

introduce some additional notation and formulate two more lemmas from which
Theorem C follows.

8.1.4. In the remainder of the proof of Theorem C (including Section 8.2) we work

with a fixed primitive character θ : L× → Q
×
� of conductor m+1 and let ψ : Fqn →

Q
×
� be the character induced by θ as in the last proposition.

8.1.5. The subgroups Jm
G ⊂ G and Jm

D ⊂ D× are each normalized by L×. We
let L× act on each of them by conjugation and form the corresponding semidirect

products J̃m
G = L× � Jm

G and J̃m
D = L× � Jm

D . Let J̃1 = J̃m
G × J̃m

D . We obtain a

surjective homomorphism f : J̃1 −→ J1 given by

f(α, x, β, y) =
(
α · x, β · y, recL(α−1 · β)

)
, α, β ∈ L×, x ∈ Jm

G , y ∈ Jm
D .

Let f∗ denote the functor of pullback via f from representations of J1 to representa-

tions of J̃1. Since f is surjective, this functor is fully faithful. If R is a representation
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of L× · Jm
G or L× · Jm

D , we will denote by R̃ its pullback to J̃m
G (respectively, J̃m

G )

via the multiplication map J̃m
G −→ L× · Jm

G (respectively, J̃m
D −→ L× · Jm

D ). If ν

is a character of L× and R′ is a representation of either J̃m
G or J̃m

D , we will write
ν ·R′ for the twist of R′ by the pullback of ν via the natural projection onto L×.

Lemma 8.1.3. f∗(π ⊗ ρ⊗ (θ ◦ rec−1
L )

) ∼= (θ−1 · π̃)⊗ (θ · ρ̃) as representations of

J̃1.

This lemma follows at once from the definitions.

8.1.6. Let η : K× → Q
×
� be the character defined by η(x) = |x|(n−1)/2, where |·| is

the normalized absolute value on K. If n is even, to define η one needs to choose
√
q ∈ Q

×
� , though ultimately this choice is irrelevant (see the remark following

Theorem C). We also let ξ : L× → Q
×
� be the character determined by ξ

∣∣
O×

L

≡ 1

and ξ(
) = (−1)n−1. We now need to define representations Rψ and R′
ψ−1 of the

groups J̃m
G and J̃m

D , respectively; their construction depends on the parity of m.

The case where m is odd. Let Rψ : J̃m
G −→ Q

×
� be the character defined as the

composition

J̃m
G = L× � Jm

G −→ Jm
G −→ 1 + pmL = Um

L −→ Um
L /Um+1

L
∼= Fqn

ψ−→ Q
×
� ,

where the first two arrows are the natural projections (even though they are not
group homomorphisms, Rψ is). On the other hand, we have a natural surjective ho-

momorphism J̃m
D → R×(Fqn), whereR is the ring scheme introduced in Section 4.4.

It is defined by combining the surjection Jm
D → U(Fqn) ↪→ R×(Fqn) (cf. the proof

of Lemma 3.3.1) and the surjection L× → O×
L → (OL/(
))× = F×

qn ↪→ R×(Fqn),

where the arrow L× → O×
L is the splitting of O×

L ↪→ L× defined by 
.

The right multiplication action of U(Fqn) ⊂ R×(Fqn) on XFq
and the conjuga-

tion action of F×
qn ⊂ R×(Fqn) on XFq

combine to form a right action of R×(Fqn) on

XFq
, which yields an irreducible representation R′

ψ−1 of J̃m
D in the space Hn−1[ψ−1].

The case where m is even. Here the roles of G and D are reversed. We have
a surjective homomorphism J̃m

G → R×(Fqn), which yields a right action of J̃m
G on

XFq
and an irreducible representation Rψ of J̃m

G in the space Hn−1[ψ]. On the other

hand, R′
ψ−1 is the one-dimensional representation of J̃m

D defined as the composition

J̃m
D = L× � Jm

D −→ Jm
D −→ 1 + p

m
L = Um

L −→ Um
L /Um+1

L
∼= Fqn

ψ−1

−→ Q
×
� .

In each of the two cases considered above, we have the following lemma.

Lemma 8.1.4. f∗Hn−1[ψ±1] ∼=
(
(η ◦NL/K) · ξ ·Rψ

)
⊗
(
(η ◦NL/K)−1 · ξ−1 ·R′

ψ−1

)
.

As usual, the sign is given by ±1 = (−1)m. The lemma is proved in Section 8.6.
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8.2. Completion of the proof of Theorem C. Combining Lemmas 8.1.3 and
8.1.4, we see that the right hand side of (8.1.1) is nonzero if and only if

(8.2.1) Hom
˜Jm
G

(
θ−1 · π̃, (η ◦NL/K) · ξ · Rψ

)
�= 0

and

(8.2.2) Hom
˜Jm
D

(
θ · ρ̃, (η ◦NL/K)−1 · ξ−1 ·R′

ψ−1

)
�= 0.

The representation (η ◦ NL/K) · ξ · θ · Rψ of J̃m
G is trivial on the kernel of the

multiplication map J̃m
G −→ L× · Jm

G and hence descends to a representation of
L× ·Jm

G that we will denote by R(θ). Similarly, the representation (η◦NL/K)−1 ·ξ−1 ·
θ−1 ·R′

ψ−1 of J̃m
D is trivial on the kernel of the multiplication map J̃m

D −→ L× · Jm
D

and hence descends to a representation of L× · Jm
D that we will denote by R′(θ−1).

We see that (8.2.1) is equivalent to the nonvanishing of HomL×·Jm
G
(π

∣∣
L×·Jm

G

, R(θ))

and (8.2.2) is equivalent to the nonvanishing of HomL×·Jm
D
(ρ
∣∣
L×·Jm

D

, R′(θ−1)).

Now let LLC(σ) denote the representation of G corresponding to σ = IndL/K θ
under the local Langlands correspondence and let JLC(σ) denote the representation
of D× corresponding to LLC(σ) under the Jacquet-Langlands correspondence.

Proposition 8.2.1. We have IndGL×·Jm
G
(R(θ)) ∼= (η ◦det)⊗LLC(σ) and IndD

×

L×·Jm
D

(R′(θ−1)) ∼= (η ◦Nrd)−1 ⊗ JLC(σ)∨, where Nrd : D× −→ K× is the reduced norm
and det : G −→ K× is the usual determinant.

Proof. We sketch the proof; for further details see [4, Section 2]. Given θ, there is
an explicit construction of a supercuspidal representation πθ of G = GLn(K) which
goes back to [14]. It is defined as

πθ = IndGL×·Jm
G
R̃(θ),

where R̃(θ) is a certain representation of Jm
G ; tracing through the constructions

above and in [14] one finds R(θ) = R̃((η ◦ NL/K) · ξ · θ). On the other hand, the

main theorem of [12] is that LLC(σ) = πξθ. Thus Ind
G
L×·Jm

G
(R(θ)) ∼= π(η◦NL/K)·ξ◦θ◦

(η◦det)⊗LLC(σ). The argument for D× is similar except that one uses the explicit
construction of JLC(σ) found in [13]. �

Using Proposition 8.2.1, we see that properties (8.2.1) and (8.2.2) hold if and
only if π ∼= (η ◦det)⊗LLC(σ) and ρ ∼= (η ◦Nrd)−1⊗JLC(σ)∨, in which case both
Hom spaces are one-dimensional. This finishes the proof of Theorem C.

8.3. Proof of Proposition 8.1.2 (a). Assume that HomJ
(
π⊗ρ⊗σ

∣∣
J ,Hn−1

)
�= 0

and choose any character θ : L× → Q
×
� such that θ ◦ rec−1

L is a quotient of σ
∣∣
Wab

L

.

8.3.1. Case 1. Suppose that m is odd. If α ∈ Um
L , then the element

(α−1, 1, recL(α)) = (α−1, α−1, 1) · (1, α, recL(α)) ∈ J1

acts trivially on XFq
, while the element (α−1, 1, 1) acts on XFq

as multiplication

by the element of Z(Fqn) coming from α via the identification Um
L /Um+1

L
∼= Fqn

∼=
Z(Fqn). Hence (1, 1, recL(α)) acts on XFq

as the inverse of the latter.
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The assumption that HomJ
(
π ⊗ ρ ⊗ σ

∣∣
J ,Hn−1

)
�= 0 and the definition of θ

already imply that θ
∣∣
Um+1

L

≡ 1 and that θ
∣∣
Um

L

comes from a character ψ : Fqn → Q
×
�

with trivial Gal(Fqn/Fq)-stabilizer. A fortiori, θ has trivial Gal(L/K)-stabilizer, so
σθ is irreducible. By construction, HomWL/K

(σ, σθ) �= 0, so σ ∼= σθ.

8.3.2. Case 2. Now let m be even. Then we use the factorization

(1, 1, recL(α)) = (1, α−1, 1) · (1, α, recL(α))
to conclude that if α ∈ Um

L , then the element (1, 1, recL(α)) acts on XFq
as multipli-

cation by the element of Z(Fqn) coming from α via the identification Um
L /Um+1

L
∼=

Fqn
∼= Z(Fqn). The rest of the argument is the same as in the case where m is odd.

8.4. Proof of Proposition 8.1.2(b). Fix θ and ψ as in the statement of the
proposition and suppose that σ = σθ. Let us construct the isomorphism (8.1.1).
As an intermediate step, define Hn−1

σ =
⊕

Hn−1[γ · ψ±1], where γ ranges over
Gal(Fqn/Fq) and γ · ψ±1(x) = ψ(γ(x))±1, the sign being ±1 = (−1)m, as in the
proposition.

Lemma 8.4.1. Hn−1
σ

∼= IndJJ1
(Hn−1[ψ±1]) as representations of J .

This lemma is proved in Section 8.5. Frobenius reciprocity yields a natural
isomorphism

(8.4.1) HomJ
(
π ⊗ ρ⊗ σ

∣∣
J ,Hn−1

σ

) ∼= HomJ1

(
π ⊗ ρ⊗ σ

∣∣
J1
,Hn−1[ψ±1]

)
.

The argument of Section 8.3.1 (resp. Section 8.3.2) when m is odd (resp. even)
shows that the left hand side of (8.4.1) is equal to the left hand side of (8.1.1). The
right hand side of (8.4.1) can be naturally identified with the right hand side of
(8.1.1) because σ

∣∣
Wab

L

is isomorphic to the direct sum of Gal(L/K)-conjugates of

θ ◦ rec−1
L , which have pairwise distinct restrictions to Um

L . �
8.5. Proof of Lemma 8.4.1. Let Φ ∈ WL/K be the element such that j2(Φ) =

Π ∈ ND×(L×) and write Φ0 = (j1(Φ), j2(Φ),Φ) ∈ W (cf. Section 7.4.4). The
quotient group J /J1 is cyclic of order n and is generated by the image of Φ0.

Let us view Um
L as a subgroup of J1 via the embedding Um

L ↪→ Jm
G (resp.

Um
L ↪→ Jm

D ) when m is odd (resp. even). In each case, the induced action of Um
L

on XFq
is the inverse of the action induced by the multiplication action of Z(Fqn)

via the identification Um
L /Um+1

L
∼= Z(Fqn). Moreover, the conjugation action of Φ0

on Um
L coincides with the action of the Frobenius ϕ ∈ Gal(L/K). This proves the

lemma.

8.6. Proof of Lemma 8.1.4. Note that (η ◦ NL/K) · ξ is the unramified char-

acter of L× that takes value (−1)n−1 · q−n(n−1)/2 on 
. On the other hand,
by Remark 7.5.1(2), the action of idX0

⊗ϕ−n
q on Hn−1 induced by its action on

XFq
= X0 ⊗Fq

Fq (see Section 7.4.4) is given by the scalar (−1)n−1 · qn(n−1)/2. To

obtain Lemma 8.1.4 it remains to combine the following observations.

8.6.1. The element

f
(
(
, 1), (1, 1)

)
= (
, 1, recL(


−1)) = (
,
, 1) · (1, 
−1, recL(

−1)) ∈ J

acts onXFq
via idX0

⊗ϕn
q because (
,
, 1) acts trivially and (1, 
−1, recL(


−1)) =

Φ−n
0 , where Φ0 = (j1(Φ), j2(Φ),Φ) ∈ W (cf. Section 7.4.4).
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8.6.2. Similarly, f
(
(1, 1), (
, 1)

)
= (1, 
, recL(
)) ∈ J acts on XFq

via idX0
⊗ϕ−n

q .

8.6.3. Suppose that α ∈ O×
L . Then the element

f
(
(α, 1), (1, 1)

)
= (α, 1, recL(α

−1)) = (α, α, 1) · (1, α−1, recL(α
−1)) ∈ J

acts trivially on XFq
if m is odd, and acts on XFq

via x 	→ α−1xα, where α denotes

the image of α in O×
L /U

1
L
∼= F×

qn , if m is even.

8.6.4. Similarly, f
(
(1, 1), (α, 1)

)
= (1, α, recL(α)) ∈ J acts on XFq

via x 	→ α−1xα

if m is odd, and acts trivially on XFq
if m is even.

9. Proof of Theorem A

Theorem A claimed the existence of a formal scheme V whose generic fiber
is an open subspace of MH,∞,C and whose special fiber realizes the Langlands
correspondences in its middle cohomology. We now give the proof of Theorem A.
In Part 1, we constructed an affinoid Z ⊂ MH,∞,C , and a formal model Z; we

described the special fiber Z in Theorem 3.6.1. The stabilizer of Z in GLn(K) ×
D× ×WK was a certain open subgroup J . As for Z, it is a union of (uncountably

many) copies of Xperf

Fq
, the perfection of an affine variety XFq

. Corollary 3.6.2 gave

the cohomology of Z in terms of XFq
:

H•
c (Z,Q�) =

⊕
ψ

H•
c (XFq

,Q�)⊗ (ψ ◦ χ),

where ψ runs over characters of 1 + pmK . Here χ : GLn(K) × D× × WK → K×

is the determinant map of Section 3.6. Thus representations of J appearing in
Hn−1

c (Z,Q�) are exactly the twists of representations appearing in Hn−1
c (XFq

,Q�)

by characters of 1+pmK . The desired formal scheme V is the disjoint union of copies

of Z indexed by cosets of J in GLn(K) ×D× ×WK . Thus the cohomology of V
is induced from that of Z from J to GLn(K) × D× × WK . This shows that an
irreducible representation π⊗ρ⊗σ of GLn(K)×D××WK appears in Hn−1

c (V,Q�)
if and only if its restriction to J appears in Hn−1(Z,Q�). This happens exactly
when (up to a twist) π ⊗ ρ⊗ σ|J appears in Hn−1(XFq

,Q�). By Theorem C, this

happens if and only if π corresponds to ρ∨ and σ
(
n−1
2

)
under the local Langlands

correspondence, and (up to a twist) there is a primitive character θ : L× → Q
×
� of

conductor m + 1 such that σ = IndL/K θ. In this case, π ⊗ ρ ⊗ σ|J appears with

multiplicity 1 in Hn−1(X ⊗ Fq,Q�), so that π ⊗ ρ ⊗ σ appears with multiplicity 1

in Hn−1(V,Q�). This completes the proof of Theorem A.
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