Dynamical degrees of birational transformations of projective surfaces
HTML articles powered by AMS MathViewer
- by Jérémy Blanc and Serge Cantat;
- J. Amer. Math. Soc. 29 (2016), 415-471
- DOI: https://doi.org/10.1090/jams831
- Published electronically: June 3, 2015
- PDF | Request permission
Abstract:
The dynamical degree $\lambda (f)$ of a birational transformation $f$ measures the exponential growth rate of the degree of the formulas that define the $n$th iterate of $f$. We study the set of all dynamical degrees of all birational transformations of projective surfaces, and the relationship between the value of $\lambda (f)$ and the structure of the conjugacy class of $f$. For instance, the set of all dynamical degrees of birational transformations of the complex projective plane is a closed and well ordered set of algebraic numbers.References
- Maria Alberich-Carramiñana, Geometry of the plane Cremona maps, Lecture Notes in Mathematics, vol. 1769, Springer-Verlag, Berlin, 2002. MR 1874328, DOI 10.1007/b82933
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225, DOI 10.1007/978-3-642-57739-0
- Eric Bedford and Jeffrey Diller, Energy and invariant measures for birational surface maps, Duke Math. J. 128 (2005), no. 2, 331–368. MR 2140266, DOI 10.1215/S0012-7094-04-12824-6
- Eric Bedford and Kyounghee Kim, Periodicities in linear fractional recurrences: degree growth of birational surface maps, Michigan Math. J. 54 (2006), no. 3, 647–670. MR 2280499, DOI 10.1307/mmj/1163789919
- Eric Bedford and Kyounghee Kim, Dynamics of rational surface automorphisms: linear fractional recurrences, J. Geom. Anal. 19 (2009), no. 3, 553–583. MR 2496566, DOI 10.1007/s12220-009-9077-8
- Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310, DOI 10.1007/978-3-642-58158-8
- Yves Benoist and Pierre de la Harpe, Adhérence de Zariski des groupes de Coxeter, Compos. Math. 140 (2004), no. 5, 1357–1366 (French, with English summary). MR 2081159, DOI 10.1112/S0010437X04000338
- M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992. With a preface by David W. Boyd. MR 1187044, DOI 10.1007/978-3-0348-8632-1
- Jérémy Blanc, Sous-groupes algébriques du groupe de Cremona, Transform. Groups 14 (2009), no. 2, 249–285 (French, with English and French summaries). MR 2504924, DOI 10.1007/s00031-008-9046-5
- Jérémy Blanc and Serge Cantat, Small dynamical degrees and Pisot numbers below the Golden mean (2015). (In preparation).
- Jérémy Blanc and Julie Déserti, Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (to be published) (2011), 1–20, available at arXiv:1109.6810.
- Jérémy Blanc and Jean-Philippe Furter, Topologies and structures of the Cremona groups, Ann. of Math. (2) 178 (2013), no. 3, 1173–1198. MR 3092478, DOI 10.4007/annals.2013.178.3.8
- Jeffrey F. Brock, Weil-Petersson translation distance and volumes of mapping tori, Comm. Anal. Geom. 11 (2003), no. 5, 987–999. MR 2032506, DOI 10.4310/CAG.2003.v11.n5.a6
- Marc Burger, Alessandra Iozzi, and Nicolas Monod, Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. 22 (2005), 1331–1369. MR 2152540, DOI 10.1155/IMRN.2005.1331
- Serge Cantat, Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 10, 901–906 (French, with English and French summaries). MR 1689873, DOI 10.1016/S0764-4442(99)80294-8
- Serge Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174 (2011), no. 1, 299–340 (French, with English and French summaries). MR 2811600, DOI 10.4007/annals.2011.174.1.8
- Serge Cantat, The Cremona group in two variables, Proceedings of the Sixth European Congress of Mathematics, E.M.S., 2012, pp. 211–225.
- Serge Cantat, Dynamics of automorphisms of compact complex surfaces, Frontiers in Complex Dynamics, Princeton Mathematical Series, vol. 51, Princeton University Press, Princeton, NJ, 2014, pp. 463–514. In celebration of John Milnor’s 80th birthday.
- Serge Cantat and Stéphane Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), no. 1, 31–94. With an appendix by Yves de Cornulier. MR 3037611, DOI 10.1007/s11511-013-0090-1
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- Jeffrey Diller, Cremona transformations, surface automorphisms, and plane cubics, Michigan Math. J. 60 (2011), no. 2, 409–440. With an appendix by Igor Dolgachev. MR 2825269, DOI 10.1307/mmj/1310667983
- J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), no. 6, 1135–1169. MR 1867314, DOI 10.1353/ajm.2001.0038
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- I. Dolgachev and S. Kond\B{o}, A supersingular $K3$ surface in characteristic 2 and the Leech lattice, Int. Math. Res. Not. 1 (2003), 1–23. MR 1935564, DOI 10.1155/S1073792803202038
- Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
- Federigo Enriques, Sui gruppi continui di trasformazioni cremoniane nel piano, Rom. Acc. L. Rend. (5) $\text {II}_1$ (1er Sem., 1893), 468–473.
- Hélène Esnault, Keiji Oguiso, and Xun Yu, Automorphisms of elliptic ${K3}$ surfaces and salem numbers of maximal degree (2014), 1–12 pp., available at arXiv:1411.0769.
- Charles Favre, Le groupe de Cremona et ses sous-groupes de type fini, Astérisque 332 (2010), Exp. No. 998, vii, 11–43 (French, with French summary). Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011. MR 2648673
- J. Franks and E. Rykken, Pseudo-Anosov homeomorphisms with quadratic expansion, Proc. Amer. Math. Soc. 127 (1999), no. 7, 2183–2192. MR 1485474, DOI 10.1090/S0002-9939-99-04731-0
- M. Kh. Gizatullin, Defining relations for the Cremona group of the plane, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 909–970, 1134 (Russian). MR 675525
- Brian Harbourne, Automorphisms of $K3$-like rational surfaces, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 17–28. MR 927971, DOI 10.1090/pspum/046.2/927971
- János Kollár, Karen E. Smith, and Alessio Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004., DOI 10.1017/CBO9780511756382
- Christopher J. Leininger, On groups generated by two positive multi-twists: Teichmüller curves and Lehmer’s number, Geom. Topol. 8 (2004), 1301–1359. MR 2119298, DOI 10.2140/gt.2004.8.1301
- David I. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 140–186. MR 521918
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI 10.1007/s002220050343
- Curtis T. McMullen, Coxeter groups, Salem numbers and the Hilbert metric, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 151–183. MR 1953192, DOI 10.1007/s102400200001
- Curtis T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 49–89. MR 2354205, DOI 10.1007/s10240-007-0004-x
- Curtis T. McMullen, Dynamics with small entropy on projective ${K3}$ surfaces, Inventiones Math. (2011), 1–39.
- Masayoshi Nagata, On rational surfaces. I. Irreducible curves of arithmetic genus $0$ or $1$, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 32 (1960), 351–370. MR 126443, DOI 10.1215/kjm/1250776405
- Masayoshi Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 271–293. MR 126444, DOI 10.1215/kjm/1250775912
- William P. Thurston, Entropies in dimension one, Frontiers in Complex Dynamics, Princeton Mathematical Series, vol. 51, Princeton University Press, Princeton, NJ, 2014, pp. 339–384. In celebration of John Milnor’s 80th birthday.
- Takato Uehara, Rational surface automorphisms with positive entropy (2012), 1–38 pp., available at arXiv:1009.2143.
- Michel Vaquié, Valuations, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 539–590 (French). MR 1748635
- Junyi Xie, Periodic points of birational transformations on projective surfaces, Duke Math. J. (to be published) (2011), 1–28, available at arXiv:1106.1825.
Bibliographic Information
- Jérémy Blanc
- Affiliation: Mathematisches Institut, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland
- MR Author ID: 744287
- Email: Jeremy.Blanc@unibas.ch
- Serge Cantat
- Affiliation: IRMAR, UMR 6625 du CNRS, Université de Rennes I, 35042 Rennes, France
- MR Author ID: 614455
- Email: cantat@univ-rennes1.fr
- Received by editor(s): July 1, 2013
- Received by editor(s) in revised form: February 24, 2015
- Published electronically: June 3, 2015
- Additional Notes: The first author acknowledges support by the Swiss National Science Foundation Grant “Birational Geometry” PP00P2_128422 /1.
Both authors acknowledge support by the French National Research Agency Grant “BirPol,” ANR-11-JS01-004-01 - © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 415-471
- MSC (2010): Primary 14E07; Secondary 37F10, 32H50
- DOI: https://doi.org/10.1090/jams831
- MathSciNet review: 3454379