## A proof of the Howe duality conjecture

HTML articles powered by AMS MathViewer

- by Wee Teck Gan and Shuichiro Takeda PDF
- J. Amer. Math. Soc.
**29**(2016), 473-493 Request permission

## Abstract:

We give a proof of the Howe duality conjecture in the theory of local theta correspondence for symplectic-orthogonal or unitary dual pairs in arbitrary residual characteristic.## References

- Wee Teck Gan and Atsushi Ichino,
*Formal degrees and local theta correspondence*, Invent. Math.**195**(2014), no. 3, 509–672. MR**3166215**, DOI 10.1007/s00222-013-0460-5 - Wee Teck Gan and Gordan Savin,
*Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence*, Compos. Math.**148**(2012), no. 6, 1655–1694. MR**2999299**, DOI 10.1112/S0010437X12000486 - W. T. Gan and S. Takeda,
*On the Howe duality conjecture in classical theta correspondence*, to appear in Contemporary Math., volume in honor of J. Cogdell (2014), arXiv:1405.2626. - R. Howe,
*$\theta$-series and invariant theory*, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 275–285. MR**546602** - Roger Howe,
*Transcending classical invariant theory*, J. Amer. Math. Soc.**2**(1989), no. 3, 535–552. MR**985172**, DOI 10.1090/S0894-0347-1989-0985172-6 - M. Hanzer,
*Inducirane reprezentacije hermitskih kvaternionskih grupa*. Ph.D. Thesis (2005), University of Zagreb. - Marcela Hanzer and Goran Muić,
*Parabolic induction and Jacquet functors for metaplectic groups*, J. Algebra**323**(2010), no. 1, 241–260. MR**2564837**, DOI 10.1016/j.jalgebra.2009.07.001 - Stephen S. Kudla,
*On the local theta-correspondence*, Invent. Math.**83**(1986), no. 2, 229–255. MR**818351**, DOI 10.1007/BF01388961 - Stephen S. Kudla,
*Splitting metaplectic covers of dual reductive pairs*, Israel J. Math.**87**(1994), no. 1-3, 361–401. MR**1286835**, DOI 10.1007/BF02773003 - Stephen S. Kudla and Stephen Rallis,
*On first occurrence in the local theta correspondence*, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 273–308. MR**2192827**, DOI 10.1515/9783110892703.273 - Jian-Shu Li, Binyong Sun, and Ye Tian,
*The multiplicity one conjecture for local theta correspondences*, Invent. Math.**184**(2011), no. 1, 117–124. MR**2782253**, DOI 10.1007/s00222-010-0287-2 - Yanan Lin, Binyong Sun, and Shaobin Tan,
*MVW-extensions of quaternionic classical groups*, Math. Z.**277**(2014), no. 1-2, 81–89. MR**3205764**, DOI 10.1007/s00209-013-1246-6 - Alberto Mínguez,
*Correspondance de Howe explicite: paires duales de type II*, Ann. Sci. Éc. Norm. Supér. (4)**41**(2008), no. 5, 717–741 (French, with English and French summaries). MR**2504432**, DOI 10.24033/asens.2080 - Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger,
*Correspondances de Howe sur un corps $p$-adique*, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR**1041060**, DOI 10.1007/BFb0082712 - Goran Muić,
*Howe correspondence for discrete series representations; the case of $(\textrm {Sp}(n),\textrm {O}(V))$*, J. Reine Angew. Math.**567**(2004), 99–150. MR**2038306**, DOI 10.1515/crll.2004.014 - Goran Muić,
*On the structure of the full lift for the Howe correspondence of $(\textrm {Sp}(n),\textrm {O}(V))$ for rank-one reducibilities*, Canad. Math. Bull.**49**(2006), no. 4, 578–591. MR**2269768**, DOI 10.4153/CMB-2006-054-3 - Goran Muić,
*On the structure of theta lifts of discrete series for dual pairs $(\textrm {Sp}(n),\textrm {O}(V))$*, Israel J. Math.**164**(2008), 87–124. MR**2391142**, DOI 10.1007/s11856-008-0022-5 - Goran Muić,
*Theta lifts of tempered representations for dual pairs $(\textrm {Sp}_{2n},\textrm {O}(V))$*, Canad. J. Math.**60**(2008), no. 6, 1306–1335. MR**2462449**, DOI 10.4153/CJM-2008-056-6 - Marko Tadić,
*Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups*, J. Algebra**177**(1995), no. 1, 1–33. MR**1356358**, DOI 10.1006/jabr.1995.1284 - J.-L. Waldspurger,
*Démonstration d’une conjecture de dualité de Howe dans le cas $p$-adique, $p\neq 2$*, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 267–324 (French). MR**1159105** - A. V. Zelevinsky,
*Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$*, Ann. Sci. École Norm. Sup. (4)**13**(1980), no. 2, 165–210. MR**584084**, DOI 10.24033/asens.1379

## Additional Information

**Wee Teck Gan**- Affiliation: Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
- MR Author ID: 621634
- Email: matgwt@nus.edu.sg
**Shuichiro Takeda**- Affiliation: Mathematics Department, University of Missouri, 202 Math Sciences Building, Columbia, Missouri 65211
- MR Author ID: 873141
- Email: takedas@missouri.edu
- Received by editor(s): July 9, 2014
- Received by editor(s) in revised form: July 27, 2014, and March 4, 2015
- Published electronically: July 13, 2015
- Additional Notes: The first author is partially supported by an MOE Tier 1 Grant R-146-000-155-112 and an MOE Tier Two Grant R-146-000-175-112.

The second author is partially supported by NSF grant DMS-1215419. - © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**29**(2016), 473-493 - MSC (2010): Primary 11F27; Secondary 22E50
- DOI: https://doi.org/10.1090/jams/839
- MathSciNet review: 3454380

Dedicated: to Professor Roger Howe who started it all on the occasion of his 70th birthday