A proof of the Howe duality conjecture
HTML articles powered by AMS MathViewer
- by Wee Teck Gan and Shuichiro Takeda;
- J. Amer. Math. Soc. 29 (2016), 473-493
- DOI: https://doi.org/10.1090/jams/839
- Published electronically: July 13, 2015
- PDF | Request permission
Previous version: Original version posted July 13, 2015
Corrected version: Current version corrects publisher's error which provided incorrect information for bibliographic reference [GT].
Abstract:
We give a proof of the Howe duality conjecture in the theory of local theta correspondence for symplectic-orthogonal or unitary dual pairs in arbitrary residual characteristic.References
- Wee Teck Gan and Atsushi Ichino, Formal degrees and local theta correspondence, Invent. Math. 195 (2014), no. 3, 509–672. MR 3166215, DOI 10.1007/s00222-013-0460-5
- Wee Teck Gan and Gordan Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), no. 6, 1655–1694. MR 2999299, DOI 10.1112/S0010437X12000486
- W. T. Gan and S. Takeda, On the Howe duality conjecture in classical theta correspondence, to appear in Contemporary Math., volume in honor of J. Cogdell (2014), arXiv:1405.2626.
- R. Howe, $\theta$-series and invariant theory, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 275–285. MR 546602
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- M. Hanzer, Inducirane reprezentacije hermitskih kvaternionskih grupa. Ph.D. Thesis (2005), University of Zagreb.
- Marcela Hanzer and Goran Muić, Parabolic induction and Jacquet functors for metaplectic groups, J. Algebra 323 (2010), no. 1, 241–260. MR 2564837, DOI 10.1016/j.jalgebra.2009.07.001
- Stephen S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), no. 2, 229–255. MR 818351, DOI 10.1007/BF01388961
- Stephen S. Kudla, Splitting metaplectic covers of dual reductive pairs, Israel J. Math. 87 (1994), no. 1-3, 361–401. MR 1286835, DOI 10.1007/BF02773003
- Stephen S. Kudla and Stephen Rallis, On first occurrence in the local theta correspondence, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 273–308. MR 2192827, DOI 10.1515/9783110892703.273
- Jian-Shu Li, Binyong Sun, and Ye Tian, The multiplicity one conjecture for local theta correspondences, Invent. Math. 184 (2011), no. 1, 117–124. MR 2782253, DOI 10.1007/s00222-010-0287-2
- Yanan Lin, Binyong Sun, and Shaobin Tan, MVW-extensions of quaternionic classical groups, Math. Z. 277 (2014), no. 1-2, 81–89. MR 3205764, DOI 10.1007/s00209-013-1246-6
- Alberto Mínguez, Correspondance de Howe explicite: paires duales de type II, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 5, 717–741 (French, with English and French summaries). MR 2504432, DOI 10.24033/asens.2080
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- Goran Muić, Howe correspondence for discrete series representations; the case of $(\textrm {Sp}(n),\textrm {O}(V))$, J. Reine Angew. Math. 567 (2004), 99–150. MR 2038306, DOI 10.1515/crll.2004.014
- Goran Muić, On the structure of the full lift for the Howe correspondence of $(\textrm {Sp}(n),\textrm {O}(V))$ for rank-one reducibilities, Canad. Math. Bull. 49 (2006), no. 4, 578–591. MR 2269768, DOI 10.4153/CMB-2006-054-3
- Goran Muić, On the structure of theta lifts of discrete series for dual pairs $(\textrm {Sp}(n),\textrm {O}(V))$, Israel J. Math. 164 (2008), 87–124. MR 2391142, DOI 10.1007/s11856-008-0022-5
- Goran Muić, Theta lifts of tempered representations for dual pairs $(\textrm {Sp}_{2n},\textrm {O}(V))$, Canad. J. Math. 60 (2008), no. 6, 1306–1335. MR 2462449, DOI 10.4153/CJM-2008-056-6
- Marko Tadić, Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups, J. Algebra 177 (1995), no. 1, 1–33. MR 1356358, DOI 10.1006/jabr.1995.1284
- J.-L. Waldspurger, Démonstration d’une conjecture de dualité de Howe dans le cas $p$-adique, $p\neq 2$, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 267–324 (French). MR 1159105
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Wee Teck Gan
- Affiliation: Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
- MR Author ID: 621634
- Email: matgwt@nus.edu.sg
- Shuichiro Takeda
- Affiliation: Mathematics Department, University of Missouri, 202 Math Sciences Building, Columbia, Missouri 65211
- MR Author ID: 873141
- Email: takedas@missouri.edu
- Received by editor(s): July 9, 2014
- Received by editor(s) in revised form: July 27, 2014, and March 4, 2015
- Published electronically: July 13, 2015
- Additional Notes: The first author is partially supported by an MOE Tier 1 Grant R-146-000-155-112 and an MOE Tier Two Grant R-146-000-175-112.
The second author is partially supported by NSF grant DMS-1215419. - © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 473-493
- MSC (2010): Primary 11F27; Secondary 22E50
- DOI: https://doi.org/10.1090/jams/839
- MathSciNet review: 3454380
Dedicated: to Professor Roger Howe who started it all on the occasion of his 70th birthday