On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data
HTML articles powered by AMS MathViewer
- by David Damanik and Michael Goldstein;
- J. Amer. Math. Soc. 29 (2016), 825-856
- DOI: https://doi.org/10.1090/jams/837
- Published electronically: June 29, 2015
Abstract:
We consider the KdV equation $\partial _t u +\partial ^3_x u +u\partial _x u=0$ with quasi-periodic initial data whose Fourier coefficients decay exponentially and prove existence and uniqueness, in the class of functions which have an expansion with exponentially decaying Fourier coefficients, of a solution on a small interval of time, the length of which depends on the given data and the frequency vector involved. For a Diophantine frequency vector and for small quasi-periodic data (i.e., when the Fourier coefficients obey $|c(m)| \le \varepsilon \exp (-\kappa _0 |m|)$ with $\varepsilon > 0$ sufficiently small, depending on $\kappa _0 > 0$ and the frequency vector), we prove global existence and uniqueness of the solution. The latter result relies on our recent work [Publ. Math. Inst. Hautes Études Sci. 119 (2014) 217] on the inverse spectral problem for the quasi-periodic Schrödinger equation.References
- J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 278 (1975), no. 1287, 555–601. MR 385355, DOI 10.1098/rsta.1975.0035
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209–262. MR 1215780, DOI 10.1007/BF01895688
- J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), no. 2, 115–159. MR 1466164, DOI 10.1007/s000290050008
- J. Bourgain, Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies, vol. 158, Princeton University Press, Princeton, NJ, 2005. MR 2100420, DOI 10.1515/9781400837144
- M. Christ, Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 131–155. MR 2333210
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\Bbb R$ and $\Bbb T$, J. Amer. Math. Soc. 16 (2003), no. 3, 705–749. MR 1969209, DOI 10.1090/S0894-0347-03-00421-1
- David Damanik and Michael Goldstein, On the inverse spectral problem for the quasi-periodic Schrödinger equation, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 217–401. MR 3210179, DOI 10.1007/s10240-013-0058-x
- Percy Deift, Some open problems in random matrix theory and the theory of integrable systems, Integrable systems and random matrices, Contemp. Math., vol. 458, Amer. Math. Soc., Providence, RI, 2008, pp. 419–430. MR 2411922, DOI 10.1090/conm/458/08951
- E. I. Dinaburg and Ja. G. Sinaĭ, The one-dimensional Schrödinger equation with quasiperiodic potential, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 8–21 (Russian). MR 470318
- B. A. Dubrovin, A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 41–51 (Russian). MR 486780
- B. A. Dubrovin, Theta-functions and nonlinear equations, Uspekhi Mat. Nauk 36 (1981), no. 2(218), 11–80 (Russian). With an appendix by I. M. Krichever. MR 616797
- B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties, Uspehi Mat. Nauk 31 (1976), no. 1(187), 55–136 (Russian). MR 427869
- I. E. Egorova, The Cauchy problem for the KdV equation with almost periodic initial data whose spectrum is nowhere dense, Spectral operator theory and related topics, Adv. Soviet Math., vol. 19, Amer. Math. Soc., Providence, RI, 1994, pp. 181–208. MR 1298446, DOI 10.1007/bf02230779
- L. H. Eliasson, Floquet solutions for the $1$-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys. 146 (1992), no. 3, 447–482. MR 1167299, DOI 10.1007/BF02097013
- L. D. Faddeev and V. E. Zakharov, Korteweg-de Vries equation: a completely integrable Hamiltonian system, Funct. Anal. Appl. 5 (1971), 280–287.
- H. Flaschka and D. W. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions, Progr. Theoret. Phys. 55 (1976), no. 2, 438–456. MR 403368, DOI 10.1143/PTP.55.438
- Clifford S. Gardner, Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system, J. Mathematical Phys. 12 (1971), 1548–1551. MR 286402, DOI 10.1063/1.1665772
- C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, A method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097., DOI 10.1103/PhysRevLett.19.1095
- C. S. Gardner and G. K. Morikawa, Similarity in the asymptotic behavior of collision free hydromagnetic waves and water waves (1960). New York University, Courant Institute Math. Sci. Res. Rep. NYO-9082.
- A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation, SIAM Rev. 14 (1972), 582–643. MR 334675, DOI 10.1137/1014101
- Thomas Kappeler, Solutions to the Korteweg-de Vries equation with irregular initial profile, Comm. Partial Differential Equations 11 (1986), no. 9, 927–945. MR 844170, DOI 10.1080/03605308608820451
- T. Kappeler and M. Makarov, On Birkhoff coordinates for KdV, Ann. Henri Poincaré 2 (2001), no. 5, 807–856. MR 1869523, DOI 10.1007/s00023-001-8595-0
- Thomas Kappeler and Jürgen Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 45, Springer-Verlag, Berlin, 2003. MR 1997070, DOI 10.1007/978-3-662-08054-2
- T. Kappeler and P. Topalov, Global wellposedness of KdV in $H^{-1}(\Bbb T,\Bbb R)$, Duke Math. J. 135 (2006), no. 2, 327–360. MR 2267286, DOI 10.1215/S0012-7094-06-13524-X
- Tosio Kato, On the Korteweg-de Vries equation, Manuscripta Math. 28 (1979), no. 1-3, 89–99. MR 535697, DOI 10.1007/BF01647967
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), no. 2, 323–347. MR 1086966, DOI 10.1090/S0894-0347-1991-1086966-0
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573–603. MR 1329387, DOI 10.1090/S0894-0347-96-00200-7
- S. B. Kuksin, Perturbation theory of conditionally periodic solutions of infinite-dimensional Hamiltonian systems and its applications to the Korteweg-de Vries equation, Mat. Sb. (N.S.) 136(178) (1988), no. 3, 396–412, 431 (Russian); English transl., Math. USSR-Sb. 64 (1989), no. 2, 397–413. MR 959490, DOI 10.1070/SM1989v064n02ABEH003316
- Sergei B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, vol. 19, Oxford University Press, Oxford, 2000. MR 1857574
- Sergej Kuksin and Jürgen Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. (2) 143 (1996), no. 1, 149–179. MR 1370761, DOI 10.2307/2118656
- Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 235310, DOI 10.1002/cpa.3160210503
- B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators, Mathematics and its Applications (Soviet Series), vol. 59, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian. MR 1136037, DOI 10.1007/978-94-011-3748-5
- Vladimir A. Marchenko, Sturm-Liouville operators and applications, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR 897106, DOI 10.1007/978-3-0348-5485-6
- H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), no. 3, 217–274. MR 397076, DOI 10.1007/BF01425567
- H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 427731, DOI 10.1002/cpa.3160290203
- Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys. 9 (1968), 1204–1209. MR 252826, DOI 10.1063/1.1664701
- S. P. Novikov, Periodic problem for the Korteweg-de Vries equation, Translation in Funct. Anal. Jan. 1 (1975), 236–246.
- L. A. Pastur and V. A. Tkachenko, Spectral theory of a class of one-dimensional Schrödinger operators with limit-periodic potentials, Trudy Moskov. Mat. Obshch. 51 (1988), 114–168, 258 (Russian); English transl., Trans. Moscow Math. Soc. (1989), 115–166. MR 983634
- Jürgen Pöschel and Eugene Trubowitz, Inverse spectral theory, Pure and Applied Mathematics, vol. 130, Academic Press, Inc., Boston, MA, 1987. MR 894477
- J. C. Saut and R. Temam, Remarks on the Korteweg-de Vries equation, Israel J. Math. 24 (1976), no. 1, 78–87. MR 454425, DOI 10.1007/BF02761431
- Kotaro Tsugawa, Local well-posedness of the KdV equation with quasi-periodic initial data, SIAM J. Math. Anal. 44 (2012), no. 5, 3412–3428. MR 3023416, DOI 10.1137/110849973
- N. J. Zabuski, Phenomena associated with oscillations of a non-linear model string (the problem of Fermi, Pasta and Ulam) (S. Drobot, ed.), Prentice-Hall, Englewood Cliffs, NJ, 1963.
Bibliographic Information
- David Damanik
- Affiliation: Department of Mathematics, Rice University, 6100 S. Main Street, Houston, Texas 77005-1892
- MR Author ID: 621621
- Email: damanik@rice.edu
- Michael Goldstein
- Affiliation: Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George Street, Toronto, Ontario, Canada M5S 2E4
- MR Author ID: 674385
- Email: gold@math.toronto.edu
- Received by editor(s): January 15, 2013
- Received by editor(s) in revised form: February 12, 2015, and May 15, 2015
- Published electronically: June 29, 2015
- Additional Notes: The first author was partially supported by a Simons Fellowship and NSF grants DMS-0800100, DMS-1067988, and DMS-1361625.
The second author was partially supported by a Guggenheim Fellowship and an NSERC grant. - © Copyright 2015 by the authors
- Journal: J. Amer. Math. Soc. 29 (2016), 825-856
- MSC (2010): Primary 35Q53; Secondary 35B15
- DOI: https://doi.org/10.1090/jams/837
- MathSciNet review: 3486173