## On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data

HTML articles powered by AMS MathViewer

- by David Damanik and Michael Goldstein;
- J. Amer. Math. Soc.
**29**(2016), 825-856 - DOI: https://doi.org/10.1090/jams/837
- Published electronically: June 29, 2015

## Abstract:

We consider the KdV equation $\partial _t u +\partial ^3_x u +u\partial _x u=0$ with quasi-periodic initial data whose Fourier coefficients decay exponentially and prove existence and uniqueness, in the class of functions which have an expansion with exponentially decaying Fourier coefficients, of a solution on a small interval of time, the length of which depends on the given data and the frequency vector involved. For a Diophantine frequency vector and for small quasi-periodic data (i.e., when the Fourier coefficients obey $|c(m)| \le \varepsilon \exp (-\kappa _0 |m|)$ with $\varepsilon > 0$ sufficiently small, depending on $\kappa _0 > 0$ and the frequency vector), we prove global existence and uniqueness of the solution. The latter result relies on our recent work [Publ. Math. Inst. Hautes Études Sci.**119**(2014) 217] on the inverse spectral problem for the quasi-periodic Schrödinger equation.

## References

- J. L. Bona and R. Smith,
*The initial-value problem for the Korteweg-de Vries equation*, Philos. Trans. Roy. Soc. London Ser. A**278**(1975), no. 1287, 555–601. MR**385355**, DOI 10.1098/rsta.1975.0035 - J. Bourgain,
*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation*, Geom. Funct. Anal.**3**(1993), no. 3, 209–262. MR**1215780**, DOI 10.1007/BF01895688 - J. Bourgain,
*Periodic Korteweg de Vries equation with measures as initial data*, Selecta Math. (N.S.)**3**(1997), no. 2, 115–159. MR**1466164**, DOI 10.1007/s000290050008 - J. Bourgain,
*Green’s function estimates for lattice Schrödinger operators and applications*, Annals of Mathematics Studies, vol. 158, Princeton University Press, Princeton, NJ, 2005. MR**2100420**, DOI 10.1515/9781400837144 - M. Christ,
*Power series solution of a nonlinear Schrödinger equation*, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 131–155. MR**2333210** - J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao,
*Sharp global well-posedness for KdV and modified KdV on $\Bbb R$ and $\Bbb T$*, J. Amer. Math. Soc.**16**(2003), no. 3, 705–749. MR**1969209**, DOI 10.1090/S0894-0347-03-00421-1 - David Damanik and Michael Goldstein,
*On the inverse spectral problem for the quasi-periodic Schrödinger equation*, Publ. Math. Inst. Hautes Études Sci.**119**(2014), 217–401. MR**3210179**, DOI 10.1007/s10240-013-0058-x - Percy Deift,
*Some open problems in random matrix theory and the theory of integrable systems*, Integrable systems and random matrices, Contemp. Math., vol. 458, Amer. Math. Soc., Providence, RI, 2008, pp. 419–430. MR**2411922**, DOI 10.1090/conm/458/08951 - E. I. Dinaburg and Ja. G. Sinaĭ,
*The one-dimensional Schrödinger equation with quasiperiodic potential*, Funkcional. Anal. i Priložen.**9**(1975), no. 4, 8–21 (Russian). MR**470318** - B. A. Dubrovin,
*A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials*, Funkcional. Anal. i Priložen.**9**(1975), no. 3, 41–51 (Russian). MR**486780** - B. A. Dubrovin,
*Theta-functions and nonlinear equations*, Uspekhi Mat. Nauk**36**(1981), no. 2(218), 11–80 (Russian). With an appendix by I. M. Krichever. MR**616797** - B. A. Dubrovin, V. B. Matveev, and S. P. Novikov,
*Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties*, Uspehi Mat. Nauk**31**(1976), no. 1(187), 55–136 (Russian). MR**427869** - I. E. Egorova,
*The Cauchy problem for the KdV equation with almost periodic initial data whose spectrum is nowhere dense*, Spectral operator theory and related topics, Adv. Soviet Math., vol. 19, Amer. Math. Soc., Providence, RI, 1994, pp. 181–208. MR**1298446**, DOI 10.1007/bf02230779 - L. H. Eliasson,
*Floquet solutions for the $1$-dimensional quasi-periodic Schrödinger equation*, Comm. Math. Phys.**146**(1992), no. 3, 447–482. MR**1167299**, DOI 10.1007/BF02097013 - L. D. Faddeev and V. E. Zakharov,
*Korteweg-de Vries equation: a completely integrable Hamiltonian system*, Funct. Anal. Appl.**5**(1971), 280–287. - H. Flaschka and D. W. McLaughlin,
*Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions*, Progr. Theoret. Phys.**55**(1976), no. 2, 438–456. MR**403368**, DOI 10.1143/PTP.55.438 - Clifford S. Gardner,
*Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system*, J. Mathematical Phys.**12**(1971), 1548–1551. MR**286402**, DOI 10.1063/1.1665772 - C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura,
*A method for solving the Korteweg-de Vries equation*, Phys. Rev. Lett.**19**(1967), 1095–1097., DOI 10.1103/PhysRevLett.19.1095 - C. S. Gardner and G. K. Morikawa,
*Similarity in the asymptotic behavior of collision free hydromagnetic waves and water waves*(1960). New York University, Courant Institute Math. Sci. Res. Rep. NYO-9082. - A. Jeffrey and T. Kakutani,
*Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation*, SIAM Rev.**14**(1972), 582–643. MR**334675**, DOI 10.1137/1014101 - Thomas Kappeler,
*Solutions to the Korteweg-de Vries equation with irregular initial profile*, Comm. Partial Differential Equations**11**(1986), no. 9, 927–945. MR**844170**, DOI 10.1080/03605308608820451 - T. Kappeler and M. Makarov,
*On Birkhoff coordinates for KdV*, Ann. Henri Poincaré**2**(2001), no. 5, 807–856. MR**1869523**, DOI 10.1007/s00023-001-8595-0 - Thomas Kappeler and Jürgen Pöschel,
*KdV & KAM*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 45, Springer-Verlag, Berlin, 2003. MR**1997070**, DOI 10.1007/978-3-662-08054-2 - T. Kappeler and P. Topalov,
*Global wellposedness of KdV in $H^{-1}(\Bbb T,\Bbb R)$*, Duke Math. J.**135**(2006), no. 2, 327–360. MR**2267286**, DOI 10.1215/S0012-7094-06-13524-X - Tosio Kato,
*On the Korteweg-de Vries equation*, Manuscripta Math.**28**(1979), no. 1-3, 89–99. MR**535697**, DOI 10.1007/BF01647967 - Carlos E. Kenig, Gustavo Ponce, and Luis Vega,
*Well-posedness of the initial value problem for the Korteweg-de Vries equation*, J. Amer. Math. Soc.**4**(1991), no. 2, 323–347. MR**1086966**, DOI 10.1090/S0894-0347-1991-1086966-0 - Carlos E. Kenig, Gustavo Ponce, and Luis Vega,
*A bilinear estimate with applications to the KdV equation*, J. Amer. Math. Soc.**9**(1996), no. 2, 573–603. MR**1329387**, DOI 10.1090/S0894-0347-96-00200-7 - S. B. Kuksin,
*Perturbation theory of conditionally periodic solutions of infinite-dimensional Hamiltonian systems and its applications to the Korteweg-de Vries equation*, Mat. Sb. (N.S.)**136(178)**(1988), no. 3, 396–412, 431 (Russian); English transl., Math. USSR-Sb.**64**(1989), no. 2, 397–413. MR**959490**, DOI 10.1070/SM1989v064n02ABEH003316 - Sergei B. Kuksin,
*Analysis of Hamiltonian PDEs*, Oxford Lecture Series in Mathematics and its Applications, vol. 19, Oxford University Press, Oxford, 2000. MR**1857574** - Sergej Kuksin and Jürgen Pöschel,
*Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation*, Ann. of Math. (2)**143**(1996), no. 1, 149–179. MR**1370761**, DOI 10.2307/2118656 - Peter D. Lax,
*Integrals of nonlinear equations of evolution and solitary waves*, Comm. Pure Appl. Math.**21**(1968), 467–490. MR**235310**, DOI 10.1002/cpa.3160210503 - B. M. Levitan and I. S. Sargsjan,
*Sturm-Liouville and Dirac operators*, Mathematics and its Applications (Soviet Series), vol. 59, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian. MR**1136037**, DOI 10.1007/978-94-011-3748-5 - Vladimir A. Marchenko,
*Sturm-Liouville operators and applications*, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR**897106**, DOI 10.1007/978-3-0348-5485-6 - H. P. McKean and P. van Moerbeke,
*The spectrum of Hill’s equation*, Invent. Math.**30**(1975), no. 3, 217–274. MR**397076**, DOI 10.1007/BF01425567 - H. P. McKean and E. Trubowitz,
*Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points*, Comm. Pure Appl. Math.**29**(1976), no. 2, 143–226. MR**427731**, DOI 10.1002/cpa.3160290203 - Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal,
*Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion*, J. Mathematical Phys.**9**(1968), 1204–1209. MR**252826**, DOI 10.1063/1.1664701 - S. P. Novikov,
*Periodic problem for the Korteweg-de Vries equation*, Translation in Funct. Anal. Jan.**1**(1975), 236–246. - L. A. Pastur and V. A. Tkachenko,
*Spectral theory of a class of one-dimensional Schrödinger operators with limit-periodic potentials*, Trudy Moskov. Mat. Obshch.**51**(1988), 114–168, 258 (Russian); English transl., Trans. Moscow Math. Soc. (1989), 115–166. MR**983634** - Jürgen Pöschel and Eugene Trubowitz,
*Inverse spectral theory*, Pure and Applied Mathematics, vol. 130, Academic Press, Inc., Boston, MA, 1987. MR**894477** - J. C. Saut and R. Temam,
*Remarks on the Korteweg-de Vries equation*, Israel J. Math.**24**(1976), no. 1, 78–87. MR**454425**, DOI 10.1007/BF02761431 - Kotaro Tsugawa,
*Local well-posedness of the KdV equation with quasi-periodic initial data*, SIAM J. Math. Anal.**44**(2012), no. 5, 3412–3428. MR**3023416**, DOI 10.1137/110849973 - N. J. Zabuski,
*Phenomena associated with oscillations of a non-linear model string (the problem of Fermi, Pasta and Ulam)*(S. Drobot, ed.), Prentice-Hall, Englewood Cliffs, NJ, 1963.

## Bibliographic Information

**David Damanik**- Affiliation: Department of Mathematics, Rice University, 6100 S. Main Street, Houston, Texas 77005-1892
- MR Author ID: 621621
- Email: damanik@rice.edu
**Michael Goldstein**- Affiliation: Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George Street, Toronto, Ontario, Canada M5S 2E4
- MR Author ID: 674385
- Email: gold@math.toronto.edu
- Received by editor(s): January 15, 2013
- Received by editor(s) in revised form: February 12, 2015, and May 15, 2015
- Published electronically: June 29, 2015
- Additional Notes: The first author was partially supported by a Simons Fellowship and NSF grants DMS-0800100, DMS-1067988, and DMS-1361625.

The second author was partially supported by a Guggenheim Fellowship and an NSERC grant. - © Copyright 2015 by the authors
- Journal: J. Amer. Math. Soc.
**29**(2016), 825-856 - MSC (2010): Primary 35Q53; Secondary 35B15
- DOI: https://doi.org/10.1090/jams/837
- MathSciNet review: 3486173