## Finite time blowup for an averaged three-dimensional Navier-Stokes equation

HTML articles powered by AMS MathViewer

- by Terence Tao
- J. Amer. Math. Soc.
**29**(2016), 601-674 - DOI: https://doi.org/10.1090/jams/838
- Published electronically: June 30, 2015
- PDF | Request permission

## Abstract:

The Navier-Stokes equation on the Euclidean space $\mathbb {R}^3$ can be expressed in the form $\partial _t u = \Delta u + B(u,u)$, where $B$ is a certain bilinear operator on divergence-free vector fields $u$ obeying the cancellation property $\langle B(u,u), u\rangle =0$ (which is equivalent to the energy identity for the Navier-Stokes equation). In this paper, we consider a modification $\partial _t u = \Delta u + \tilde B(u,u)$ of this equation, where $\tilde B$ is an averaged version of the bilinear operator $B$ (where the average involves rotations, dilations, and Fourier multipliers of order zero), and which also obeys the cancellation condition $\langle \tilde B(u,u), u \rangle = 0$ (so that it obeys the usual energy identity). By analyzing a system of ordinary differential equations related to (but more complicated than) a dyadic Navier-Stokes model of Katz and Pavlovic, we construct an example of a smooth solution to such an averaged Navier-Stokes equation which blows up in finite time. This demonstrates that any attempt to positively resolve the Navier-Stokes global regularity problem in three dimensions has to use a finer structure on the nonlinear portion $B(u,u)$ of the equation than is provided by harmonic analysis estimates and the energy identity. We also propose a program for adapting these blowup results to the true Navier-Stokes equations.## References

- A. Adamatzky (ed.),
*Game of Life Cellular Automata*, Springer, New York, 2010., DOI 10.1007/978-1-84996-217-9 - A. Adamatzky and J. Durand-Lose,
*Collision-Based Computing*, Handbook of Natural Computing, Springer-Verlag, Berlin, 2012. - Nathaël Alibaud, Jérôme Droniou, and Julien Vovelle,
*Occurrence and non-appearance of shocks in fractal Burgers equations*, J. Hyperbolic Differ. Equ.**4**(2007), no. 3, 479–499. MR**2339805**, DOI 10.1142/S0219891607001227 - David Barbato, Francesco Morandin, and Marco Romito,
*Smooth solutions for the dyadic model*, Nonlinearity**24**(2011), no. 11, 3083–3097. MR**2844828**, DOI 10.1088/0951-7715/24/11/004 - D. Barbato, F. Morandin, and M. Romito,
*Global regularity for a logarithmically supercritical hyperdissipative dyadic equation*, Dyn. Partial Differ. Equ.**11**(2014), no. 1, 39–52. MR**3194049**, DOI 10.4310/DPDE.2014.v11.n1.a2 - David Barbato, Francesco Morandin, and Marco Romito,
*Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system*, Anal. PDE**7**(2014), no. 8, 2009–2027. MR**3318746**, DOI 10.2140/apde.2014.7.2009 - Dong Li and Ya. G. Sinai,
*Blow ups of complex solutions of the 3D Navier-Stokes system and renormalization group method*, J. Eur. Math. Soc. (JEMS)**10**(2008), no. 2, 267–313. MR**2390325**, DOI 10.4171/JEMS/111 - Paul Benioff,
*Quantum mechanical Hamiltonian models of Turing machines*, J. Statist. Phys.**29**(1982), no. 3, 515–546. MR**704586**, DOI 10.1007/BF01342185 - Jean-Yves Chemin, Isabelle Gallagher, and Marius Paicu,
*Global regularity for some classes of large solutions to the Navier-Stokes equations*, Ann. of Math. (2)**173**(2011), no. 2, 983–1012. MR**2776367**, DOI 10.4007/annals.2011.173.2.9 - Alexey Cheskidov,
*Blow-up in finite time for the dyadic model of the Navier-Stokes equations*, Trans. Amer. Math. Soc.**360**(2008), no. 10, 5101–5120. MR**2415066**, DOI 10.1090/S0002-9947-08-04494-2 - V. N. Desnjanskii and E. A. Novikov,
*Simulation of cascade processes in turbulent flows*, Prikl. Mat. Mekh.**38**(1974), no. 10, 507–513. - Hongjie Dong, Dapeng Du, and Dong Li,
*Finite time singularities and global well-posedness for fractal Burgers equations*, Indiana Univ. Math. J.**58**(2009), no. 2, 807–821. MR**2514389**, DOI 10.1512/iumj.2009.58.3505 - Charles L. Fefferman,
*Existence and smoothness of the Navier-Stokes equation*, The millennium prize problems, Clay Math. Inst., Cambridge, MA, 2006, pp. 57–67. MR**2238274** - Susan Friedlander and Nataša Pavlović,
*Remarks concerning modified Navier-Stokes equations*, Discrete Contin. Dyn. Syst.**10**(2004), no. 1-2, 269–288. Partial differential equations and applications. MR**2026195**, DOI 10.3934/dcds.2004.10.269 - Susan Friedlander and Nataša Pavlović,
*Blowup in a three-dimensional vector model for the Euler equations*, Comm. Pure Appl. Math.**57**(2004), no. 6, 705–725. MR**2038114**, DOI 10.1002/cpa.20017 - L. Iskauriaza, G. A. Serëgin, and V. Shverak,
*$L_{3,\infty }$-solutions of Navier-Stokes equations and backward uniqueness*, Uspekhi Mat. Nauk**58**(2003), no. 2(350), 3–44 (Russian, with Russian summary); English transl., Russian Math. Surveys**58**(2003), no. 2, 211–250. MR**1992563**, DOI 10.1070/RM2003v058n02ABEH000609 - Isabelle Gallagher and Marius Paicu,
*Remarks on the blow-up of solutions to a toy model for the Navier-Stokes equations*, Proc. Amer. Math. Soc.**137**(2009), no. 6, 2075–2083. MR**2480289**, DOI 10.1090/S0002-9939-09-09765-2 - Alexander Kiselev, Fedor Nazarov, and Roman Shterenberg,
*Blow up and regularity for fractal Burgers equation*, Dyn. Partial Differ. Equ.**5**(2008), no. 3, 211–240. MR**2455893**, DOI 10.4310/DPDE.2008.v5.n3.a2 - D. Graca, M. Campagnolo, and J. Buescu,
*Robust Simulations of Turing Machines with Analytic Maps and Flows*, New Computational Paradigms Lecture Notes in Computer Science, Vol. 3526, Springer, New York, 2005. - R. E. Grundy and R. McLaughlin,
*Three-dimensional blow-up solutions of the Navier-Stokes equations*, IMA J. Appl. Math.**63**(1999), no. 3, 287–306. MR**1725742**, DOI 10.1093/imamat/63.3.287 - Thomas Y. Hou and Zhen Lei,
*On the stabilizing effect of convection in three-dimensional incompressible flows*, Comm. Pure Appl. Math.**62**(2009), no. 4, 501–564. MR**2492706**, DOI 10.1002/cpa.20254 - Thomas Y. Hou and Ruo Li,
*Blowup or no blowup? The interplay between theory and numerics*, Phys. D**237**(2008), no. 14-17, 1937–1944. MR**2449778**, DOI 10.1016/j.physd.2008.01.018 - Thomas Y. Hou, Zhen Lei, Guo Luo, Shu Wang, and Chen Zou,
*On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations*, Arch. Ration. Mech. Anal.**212**(2014), no. 2, 683–706. MR**3176355**, DOI 10.1007/s00205-013-0717-6 - Thomas Y. Hou, Zuoqiang Shi, and Shu Wang,
*On singularity formation of a 3D model for incompressible Navier-Stokes equations*, Adv. Math.**230**(2012), no. 2, 607–641. MR**2914960**, DOI 10.1016/j.aim.2012.02.015 - N. H. Katz and N. Pavlović,
*A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation*, Geom. Funct. Anal.**12**(2002), no. 2, 355–379. MR**1911664**, DOI 10.1007/s00039-002-8250-z - Nets Hawk Katz and Nataša Pavlović,
*Finite time blow-up for a dyadic model of the Euler equations*, Trans. Amer. Math. Soc.**357**(2005), no. 2, 695–708. MR**2095627**, DOI 10.1090/S0002-9947-04-03532-9 - N. H. Katz and A. Tapay,
*A note on the slightly supercritical Navier Stokes equations in the plane*. preprint. - Carlos E. Kenig and Gabriel S. Koch,
*An alternative approach to regularity for the Navier-Stokes equations in critical spaces*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**28**(2011), no. 2, 159–187 (English, with English and French summaries). MR**2784068**, DOI 10.1016/j.anihpc.2010.10.004 - Herbert Koch and Daniel Tataru,
*Well-posedness for the Navier-Stokes equations*, Adv. Math.**157**(2001), no. 1, 22–35. MR**1808843**, DOI 10.1006/aima.2000.1937 - Elliott H. Lieb and Michael Loss,
*Analysis*, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR**1817225**, DOI 10.1090/gsm/014 - G. Luo and T. Hou,
*Potentially Singular Solutions of the 3D Incompressible Euler Equations*. preprint. - Andrew J. Majda and Andrea L. Bertozzi,
*Vorticity and incompressible flow*, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. MR**1867882** - Stephen Montgomery-Smith,
*Finite time blow up for a Navier-Stokes like equation*, Proc. Amer. Math. Soc.**129**(2001), no. 10, 3025–3029. MR**1840108**, DOI 10.1090/S0002-9939-01-06062-2 - Masaharu Nagayama, Hisashi Okamoto, and Jinhui Zhu,
*On the blow-up of some similarity solutions of the Navier-Stokes equations*, Topics in mathematical fluid mechanics, Quad. Mat., vol. 10, Dept. Math., Seconda Univ. Napoli, Caserta, 2002, pp. 137–162. MR**2051773** - Petr Plecháč and Vladimír Šverák,
*Singular and regular solutions of a nonlinear parabolic system*, Nonlinearity**16**(2003), no. 6, 2083–2097. MR**2012858**, DOI 10.1088/0951-7715/16/6/313 - Petr Plecháč and Vladimír Šverák,
*On self-similar singular solutions of the complex Ginzburg-Landau equation*, Comm. Pure Appl. Math.**54**(2001), no. 10, 1215–1242. MR**1843986**, DOI 10.1002/cpa.3006 - Marian B. Pour-El and J. Ian Richards,
*Computability in analysis and physics*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1989. MR**1005942**, DOI 10.1007/978-3-662-21717-7 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Terence Tao,
*Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation*, Anal. PDE**2**(2009), no. 3, 361–366. MR**2603802**, DOI 10.2140/apde.2009.2.361 - Terence Tao,
*Structure and randomness*, American Mathematical Society, Providence, RI, 2008. Pages from year one of a mathematical blog. MR**2459552**, DOI 10.1090/mbk/059 - Terence Tao,
*Localisation and compactness properties of the Navier-Stokes global regularity problem*, Anal. PDE**6**(2013), no. 1, 25–107. MR**3068540**, DOI 10.2140/apde.2013.6.25 - Fabian Waleffe,
*On some dyadic models of the Euler equations*, Proc. Amer. Math. Soc.**134**(2006), no. 10, 2913–2922. MR**2231615**, DOI 10.1090/S0002-9939-06-08293-1 - Jiahong Wu,
*Global regularity for a class of generalized magnetohydrodynamic equations*, J. Math. Fluid Mech.**13**(2011), no. 2, 295–305. MR**2805867**, DOI 10.1007/s00021-009-0017-y

## Bibliographic Information

**Terence Tao**- Affiliation: Department of Mathematics, UCLA, Los Angeles, California 90095-1555
- MR Author ID: 361755
- ORCID: 0000-0002-0140-7641
- Email: tao@math.ucla.edu
- Received by editor(s): February 3, 2014
- Received by editor(s) in revised form: March 31, 2015
- Published electronically: June 30, 2015
- © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**29**(2016), 601-674 - MSC (2010): Primary 35Q30
- DOI: https://doi.org/10.1090/jams/838
- MathSciNet review: 3486169