Hypersurfaces that are not stably rational
HTML articles powered by AMS MathViewer
- by Burt Totaro;
- J. Amer. Math. Soc. 29 (2016), 883-891
- DOI: https://doi.org/10.1090/jams/840
- Published electronically: July 13, 2015
- PDF | Request permission
Abstract:
We show that a wide class of hypersurfaces in all dimensions are not stably rational. Namely, for all $d\geq 2\lceil (n+2)/3\rceil$ and $n\geq 3$, a very general complex hypersurface of degree $d$ in $\textbf {P}^{n+1}$ is not stably rational. The statement generalizes Colliot-Thélène and Pirutka’s theorem that very general quartic 3-folds are not stably rational. The result covers all the degrees in which Kollár proved that a very general hypersurface is non-rational, and a bit more. For example, very general quartic 4-folds are not stably rational, whereas it was not even known whether these varieties are rational.References
- A. Beauville, A very general sextic double solid is not stably rational, available at arXiv:1411.7484., DOI 10.1112/blms/bdv098
- A. Beauville, A very general quartic double fourfold or fivefold is not stably rational. To appear in Algebr. Geom.
- N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9, Springer, Berlin, 2006 (French). Reprint of the 1983 original. MR 2284892
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI 10.2307/1970801
- Jean-Louis Colliot-Thélène and Daniel Coray, L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques, Compositio Math. 39 (1979), no. 3, 301–332 (French). MR 550646
- J.-L. Colliot-Thélène and A. Pirutka, Hypersurfaces quartiques de dimension 3: non rationalité stable. To appear in Ann. Sci. Éc. Norm. Supér., DOI 10.24033/asens.2285
- Tommaso de Fernex and Davide Fusi, Rationality in families of threefolds, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 1, 127–135. MR 3031573, DOI 10.1007/s12215-013-0110-1
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Michel Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. France (N.S.) 21 (1985), 87 (French, with English summary). MR 844488
- Christopher D. Hacon and James Mckernan, On Shokurov’s rational connectedness conjecture, Duke Math. J. 138 (2007), no. 1, 119–136. MR 2309156, DOI 10.1215/S0012-7094-07-13813-4
- V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140–166 (Russian). MR 291172
- János Kollár, Nonrational hypersurfaces, J. Amer. Math. Soc. 8 (1995), no. 1, 241–249. MR 1273416, DOI 10.1090/S0894-0347-1995-1273416-8
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- János Kollár, Nonrational covers of $\textbf {C}\textrm {P}^m\times \textbf {C}\textrm {P}^n$, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 51–71. MR 1798980
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- János Kollár, Karen E. Smith, and Alessio Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004. MR 2062787, DOI 10.1017/CBO9780511734991
- Alexander Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. (2) 78 (2008), no. 1, 51–64. MR 2427051, DOI 10.1112/jlms/jdn011
- Shigefumi Mori, On a generalization of complete intersections, J. Math. Kyoto Univ. 15 (1975), no. 3, 619–646. MR 393054, DOI 10.1215/kjm/1250523007
- Aleksandr Pukhlikov, Birationally rigid varieties, Mathematical Surveys and Monographs, vol. 190, American Mathematical Society, Providence, RI, 2013. MR 3060242, DOI 10.1090/surv/190
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- B. Totaro, The motive of a classifying space, available at arXiv:1407.1366., DOI 10.2140/gt.2016.20.2079
- Claire Voisin, Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies, vol. 187, Princeton University Press, Princeton, NJ, 2014. MR 3186044, DOI 10.1515/9781400850532
- Claire Voisin, Unirational varieties with no universal codimension 2 cycle, Invent. Math., 201 (2015), no. 1, 207–237. MR 3359052, DOI 10.1007/s00222-014-0551-y
Bibliographic Information
- Burt Totaro
- Affiliation: Mathematics Department, UCLA, Box 951555, Los Angeles, California 90095-1555
- MR Author ID: 272212
- Email: totaro@math.ucla.edu
- Received by editor(s): February 12, 2015
- Received by editor(s) in revised form: February 26, 2015, and May 27, 2015
- Published electronically: July 13, 2015
- © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 883-891
- MSC (2010): Primary 14E08; Secondary 14J45, 14J70
- DOI: https://doi.org/10.1090/jams/840
- MathSciNet review: 3486175