## Sums of squares and varieties of minimal degree

HTML articles powered by AMS MathViewer

- by Grigoriy Blekherman, Gregory G. Smith and Mauricio Velasco PDF
- J. Amer. Math. Soc.
**29**(2016), 893-913 Request permission

## Abstract:

Let $X \subseteq \mathbb {P}^n$ be a real nondegenerate subvariety such that the set $X(\mathbb {R})$ of real points is Zariski dense. We prove that every real quadratic form that is nonnegative on $X(\mathbb {R})$ is a sum of squares of linear forms if and only if $X$ is a variety of minimal degree. This substantially extends Hilbert’s celebrated characterization of equality between nonnegative forms and sums of squares. We obtain a complete list for the cases of equality and also a classification of the lattice polytopes $Q$ for which every nonnegative Laurent polynomial with support contained in $2Q$ is a sum of squares.## References

- Victor Batyrev and Benjamin Nill,
*Multiples of lattice polytopes without interior lattice points*, Mosc. Math. J.**7**(2007), no. 2, 195–207, 349 (English, with English and Russian summaries). MR**2337878**, DOI 10.17323/1609-4514-2007-7-2-195-207 - Matthias Beck and Sinai Robins,
*Computing the continuous discretely*, Undergraduate Texts in Mathematics, Springer, New York, 2007. Integer-point enumeration in polyhedra. MR**2271992** - Eberhard Becker,
*Valuations and real places in the theory of formally real fields*, Real algebraic geometry and quadratic forms (Rennes, 1981) Lecture Notes in Math., vol. 959, Springer, Berlin-New York, 1982, pp. 1–40. MR**683127** - Grigoriy Blekherman,
*Nonnegative polynomials and sums of squares*, J. Amer. Math. Soc.**25**(2012), no. 3, 617–635. MR**2904568**, DOI 10.1090/S0894-0347-2012-00733-4 - Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas (eds.),
*Semidefinite optimization and convex algebraic geometry*, MOS-SIAM Series on Optimization, vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013. MR**3075433** - Grigoriy Blekherman, Sadik Iliman, and Martina Kubitzker,
*Dimensional differences between faces of the cones of nonnegative polynomials and sums of squares*, Int. Math. Res. Not. IMRN., DOI 10.1093/imrn/rnu202 - Markus Brodmann and Peter Schenzel,
*Arithmetic properties of projective varieties of almost minimal degree*, J. Algebraic Geom.**16**(2007), no. 2, 347–400. MR**2274517**, DOI 10.1090/S1056-3911-06-00442-5 - David A. Cox, John B. Little, and Henry K. Schenck,
*Toric varieties*, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR**2810322**, DOI 10.1090/gsm/124 - Man Duen Choi, Tsit Yuen Lam, and Bruce Reznick,
*Real zeros of positive semidefinite forms. I*, Math. Z.**171**(1980), no. 1, 1–26. MR**566480**, DOI 10.1007/BF01215051 - David Eisenbud and Shiro Goto,
*Linear free resolutions and minimal multiplicity*, J. Algebra**88**(1984), no. 1, 89–133. MR**741934**, DOI 10.1016/0021-8693(84)90092-9 - David Eisenbud and Joe Harris,
*On varieties of minimal degree (a centennial account)*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 3–13. MR**927946**, DOI 10.1090/pspum/046.1/927946 - Joseph Gubeladze,
*The isomorphism problem for commutative monoid rings*, J. Pure Appl. Algebra**129**(1998), no. 1, 35–65. MR**1626643**, DOI 10.1016/S0022-4049(97)00063-7 - Joe Harris,
*Algebraic geometry*, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR**1182558**, DOI 10.1007/978-1-4757-2189-8 - Akihiro Higashitani,
*Counterexamples of the conjecture on roots of Ehrhart polynomials*, Discrete Comput. Geom.**47**(2012), no. 3, 618–623. MR**2891252**, DOI 10.1007/s00454-011-9390-4 - David Hilbert,
*Ueber die Darstellung definiter Formen als Summe von Formenquadraten*, Math. Ann.**32**(1888), no. 3, 342–350 (German). MR**1510517**, DOI 10.1007/BF01443605 - Jean-Pierre Jouanolou,
*Théorèmes de Bertini et applications*, Progress in Mathematics, vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983 (French). MR**725671** - Jean Bernard Lasserre,
*Moments, positive polynomials and their applications*, Imperial College Press Optimization Series, vol. 1, Imperial College Press, London, 2010. MR**2589247** - Monique Laurent,
*Sums of squares, moment matrices and optimization over polynomials*, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009, pp. 157–270. MR**2500468**, DOI 10.1007/978-0-387-09686-5_{7} - S. L′vovsky,
*On inflection points, monomial curves, and hypersurfaces containing projective curves*, Math. Ann.**306**(1996), no. 4, 719–735. MR**1418349**, DOI 10.1007/BF01445273 - Motakuri Ramana and A. J. Goldman,
*Some geometric results in semidefinite programming*, J. Global Optim.**7**(1995), no. 1, 33–50. MR**1342934**, DOI 10.1007/BF01100204 - Bruce Reznick,
*Some concrete aspects of Hilbert’s 17th Problem*, Real algebraic geometry and ordered structures (Baton Rouge, LA, 1996) Contemp. Math., vol. 253, Amer. Math. Soc., Providence, RI, 2000, pp. 251–272. MR**1747589**, DOI 10.1090/conm/253/03936 - Claus Scheiderer,
*A Positivstellensatz for projective real varieties*, Manuscripta Math.**138**(2012), no. 1-2, 73–88. MR**2898748**, DOI 10.1007/s00229-011-0484-3 - Richard P. Stanley,
*A monotonicity property of $h$-vectors and $h^*$-vectors*, European J. Combin.**14**(1993), no. 3, 251–258. MR**1215335**, DOI 10.1006/eujc.1993.1028 - A. Stapledon,
*Inequalities and Ehrhart $\delta$-vectors*, Trans. Amer. Math. Soc.**361**(2009), no. 10, 5615–5626. MR**2515826**, DOI 10.1090/S0002-9947-09-04776-X - F. L. Zak,
*Projective invariants of quadratic embeddings*, Math. Ann.**313**(1999), no. 3, 507–545. MR**1678545**, DOI 10.1007/s002080050271

## Additional Information

**Grigoriy Blekherman**- Affiliation: School of Mathematics, Georgia Tech, 686 Cherry Street, Atlanta, Georgia, 30332
- MR Author ID: 668861
- Email: greg@math.gatech.edu
**Gregory G. Smith**- Affiliation: Department of Mathematics & Statistics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
- MR Author ID: 622959
- Email: ggsmith@mast.queensu.ca
**Mauricio Velasco**- Affiliation: Departamento de Matemáticas, Universidad de los Andes, Carrera 1 No. 18a 10, Edificio H, Primer Piso, 111711 Bogotá, Colombia
- Email: mvelasco@uniandes.edu.co
- Received by editor(s): January 7, 2014
- Received by editor(s) in revised form: May 8, 2015, and July 23, 2015
- Published electronically: September 3, 2015
- Additional Notes: The first author was supported in part by a Sloan Fellowship, NSF Grant DMS-0757212, the Mittag-Leffler Institute, and IPAM

The second author was supported in part by NSERC, the Mittag-Leffler Institute, and MSRI

The third author was supported in part by the FAPA grants from Universidad de los Andes - © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**29**(2016), 893-913 - MSC (2010): Primary 14P05; Secondary 12D15, 90C22
- DOI: https://doi.org/10.1090/jams/847
- MathSciNet review: 3486176