Yangians, quantum loop algebras, and abelian difference equations
HTML articles powered by AMS MathViewer
- by Sachin Gautam and Valerio Toledano Laredo;
- J. Amer. Math. Soc. 29 (2016), 775-824
- DOI: https://doi.org/10.1090/jams/851
- Published electronically: December 24, 2015
- PDF | Request permission
Abstract:
Let $\mathfrak {g}$ be a complex, semisimple Lie algebra, and $Y_\hbar (\mathfrak {g})$ and $U_q(L\mathfrak {g})$ the Yangian and quantum loop algebra of $\mathfrak {g}$. Assuming that $\hbar$ is not a rational number and that $q= e^{\pi i\hbar }$, we construct an equivalence between the finite-dimensional representations of $U_q(L\mathfrak {g})$ and an explicit subcategory of those of $Y_\hbar (\mathfrak {g})$ defined by choosing a branch of the logarithm. This equivalence is governed by the monodromy of the abelian, additive difference equations defined by the commuting fields of $Y_\hbar (\mathfrak {g})$. Our results are compatible with $q$-characters, and apply more generally to a symmetrizable Kac-Moody algebra $\mathfrak {g}$, in particular to affine Yangians and quantum toroïdal algebras. In this generality, they yield an equivalence between the representations of $Y_\hbar (\mathfrak {g})$ and $U_q(L\mathfrak {g})$ whose restriction to $\mathfrak {g}$ and $U_q\mathfrak {g}$, respectively, are integrable and in category $\mathcal {O}$.References
- Rodney J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982. MR 690578
- V. V. Bazhanov, Trigonometric solutions of triangle equations and classical Lie algebras, Phys. Lett. B 159 (1985), no. 4-6, 321–324. MR 806529, DOI 10.1016/0370-2693(85)90259-X
- V. V. Bazhanov, Integrable quantum systems and classical Lie algebras, Comm. Math. Phys. 113 (1987), no. 3, 471–503. MR 925925, DOI 10.1007/BF01221256
- Vladimir V. Bazhanov, Rouven Frassek, Tomasz Łukowski, Carlo Meneghelli, and Matthias Staudacher, Baxter $\bf Q$-operators and representations of Yangians, Nuclear Phys. B 850 (2011), no. 1, 148–174. MR 2803592, DOI 10.1016/j.nuclphysb.2011.04.006
- Jonathan Beck and Victor G. Kac, Finite-dimensional representations of quantum affine algebras at roots of unity, J. Amer. Math. Soc. 9 (1996), no. 2, 391–423. MR 1317228, DOI 10.1090/S0894-0347-96-00183-X
- George D. Birkhoff, General theory of linear difference equations, Trans. Amer. Math. Soc. 12 (1911), no. 2, 243–284. MR 1500888, DOI 10.1090/S0002-9947-1911-1500888-5
- George D. Birkhoff, The generalized Riemann problem for linear differential equations and allied problems for linear difference and $q$-difference equations, Proc. Amer. Acad. Arts Sci. 49 (1913), 521–568., DOI 10.2307/20025482
- Alexei Borodin, Isomonodromy transformations of linear systems of difference equations, Ann. of Math. (2) 160 (2004), no. 3, 1141–1182. MR 2144976, DOI 10.4007/annals.2004.160.1141
- Vyjayanthi Chari and Andrew Pressley, Yangians and $R$-matrices, Enseign. Math. (2) 36 (1990), no. 3-4, 267–302. MR 1096420
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283. MR 1137064, DOI 10.1007/BF02102063
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, UK, 1994.
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR 1357195, DOI 10.1007/BF00750760
- Ivan Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005. MR 2133033, DOI 10.1017/CBO9780511546501
- V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- N. Dunford and J. T. Schwartz, Linear operators. Part I. General theory, John Wiley and Sons, New York, 1958.
- Pavel Etingof and Olivier Schiffmann, On highest weight modules over elliptic quantum groups, Lett. Math. Phys. 47 (1999), no. 2, 179–188. MR 1682305, DOI 10.1023/A:1007543104904
- Pavel I. Etingof and Adriano A. Moura, On the quantum Kazhdan-Lusztig functor, Math. Res. Lett. 9 (2002), no. 4, 449–463. MR 1928865, DOI 10.4310/MRL.2002.v9.n4.a5
- Ludvig Faddeev, Integrable models in $(1+1)$-dimensional quantum field theory, Recent advances in field theory and statistical mechanics (Les Houches, 1982) North-Holland, Amsterdam, 1984, pp. 561–608. MR 782509
- B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum continuous $\mathfrak {gl}_\infty$: semiinfinite construction of representations, Kyoto J. Math. 51 (2011), no. 2, 337–364. MR 2793271, DOI 10.1215/21562261-1214375
- Giovanni Felder, Conformal field theory and integrable systems associated to elliptic curves, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 1247–1255. MR 1404026
- Edward Frenkel and David Hernandez, Baxter’s relations and spectra of quantum integrable models, Duke Math. J. 164 (2015), no. 12, 2407–2460. MR 3397389, DOI 10.1215/00127094-3146282
- Edward Frenkel and Nicolai Reshetikhin, The $q$-characters of representations of quantum affine algebras and deformations of $\scr W$-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163–205. MR 1745260, DOI 10.1090/conm/248/03823
- I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), no. 1, 1–60. MR 1163666, DOI 10.1007/BF02099206
- Sachin Gautam and Valerio Toledano Laredo, Yangians and quantum loop algebras, Selecta Math. (N.S.) 19 (2013), no. 2, 271–336. MR 3090231, DOI 10.1007/s00029-012-0114-2
- Sachin Gautam and Valerio Toledano Laredo, Meromorphic Kazhdan-Lusztig equivalence for Yangians and quantum loop algebras, available at arXiv:1403.5251.
- Sachin Gautam and Valerio Toledano Laredo, Elliptic quantum groups and their finite–dimensional representations . In preparation.
- Victor Ginzburg, Geometric methods in the representation theory of Hecke algebras and quantum groups, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 127–183. Notes by Vladimir Baranovsky [V. Yu. Baranovskiĭ]. MR 1649626
- N. Guay and X. Ma, From quantum loop algebras to Yangians, J. Lond. Math. Soc. (2) 86 (2012), no. 3, 683–700. MR 3000826, DOI 10.1112/jlms/jds021
- David Hernandez, Algebraic approach to $q,t$-characters, Adv. Math. 187 (2004), no. 1, 1–52. MR 2074171, DOI 10.1016/j.aim.2003.07.016
- David Hernandez, Representations of quantum affinizations and fusion product, Transform. Groups 10 (2005), no. 2, 163–200. MR 2195598, DOI 10.1007/s00031-005-1005-9
- David Hernandez, Drinfeld coproduct, quantum fusion tensor category and applications, Proc. Lond. Math. Soc. (3) 95 (2007), no. 3, 567–608. MR 2368277, DOI 10.1112/plms/pdm017
- Hiroshi Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016–1079. MR 2553377, DOI 10.1016/j.aim.2009.05.016
- M. Jimbo, H. Konno, S. Odake, and J. Shiraishi, Quasi-Hopf twistors for elliptic quantum groups, Transform. Groups 4 (1999), no. 4, 303–327. MR 1726695, DOI 10.1007/BF01238562
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Harold Knight, Spectra of tensor products of finite-dimensional representations of Yangians, J. Algebra 174 (1995), no. 1, 187–196. MR 1332866, DOI 10.1006/jabr.1995.1123
- I. M. Krichever, Analytic theory of difference equations with rational and elliptic coefficients and the Riemann-Hilbert problem, Uspekhi Mat. Nauk 59 (2004), no. 6(360), 111–150 (Russian, with Russian summary); English transl., Russian Math. Surveys 59 (2004), no. 6, 1117–1154. MR 2138470, DOI 10.1070/RM2004v059n06ABEH000798
- S. Z. Levendorskiĭ, On generators and defining relations of Yangians, J. Geom. Phys. 12 (1993), no. 1, 1–11. MR 1226802, DOI 10.1016/0393-0440(93)90084-R
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- D. Maulik and A. Okounkov, Quantum Groups and Quantum Cohomology, available at arXiv:1211.1287.
- Kei Miki, A $(q,\gamma )$ analog of the $W_{1+\infty }$ algebra, J. Math. Phys. 48 (2007), no. 12, 123520, 35. MR 2377852, DOI 10.1063/1.2823979
- Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238. MR 1808477, DOI 10.1090/S0894-0347-00-00353-2
- A. Okounkov and R. Pandharipande, The quantum differential equation of the Hilbert scheme of points in the plane, Transform. Groups 15 (2010), no. 4, 965–982. MR 2753265, DOI 10.1007/s00031-010-9116-3
- O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math. 147 (2011), no. 1, 188–234. MR 2771130, DOI 10.1112/S0010437X10004872
- F. A. Smirnov, Form factors in completely integrable models of quantum field theory, Advanced Series in Mathematical Physics, vol. 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. MR 1253319, DOI 10.1142/1115
- L. A. Takhtadzhyan, Solutions of the triangle equations with $Z_{n}\times Z_{n}$-symmetry and matrix analogues of the Weierstrass zeta and sigma functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 133 (1984), 258–276 (Russian, with English summary). Differential geometry, Lie groups and mechanics, VI. MR 742162
- Oleksandr Tsymbaliuk, The Affine Yangian of gl1 and the Infinitesimal Cherednik Algebras, ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 3279034
- Marius van der Put and Michael F. Singer, Galois theory of difference equations, Lecture Notes in Mathematics, vol. 1666, Springer-Verlag, Berlin, 1997. MR 1480919, DOI 10.1007/BFb0096118
- Michela Varagnolo, Quiver varieties and Yangians, Lett. Math. Phys. 53 (2000), no. 4, 273–283. MR 1818101, DOI 10.1023/A:1007674020905
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- Sachin Gautam
- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
- MR Author ID: 848064
- Email: sachin@math.columbia.edu
- Valerio Toledano Laredo
- Affiliation: Department of Mathematics, Northeastern University, 567 Lake Hall, 360 Huntington Avenue, Boston, Massachusetts 02115
- MR Author ID: 353547
- Email: V.ToledanoLaredo@neu.edu
- Received by editor(s): May 14, 2015
- Published electronically: December 24, 2015
- Additional Notes: The second author was supported in part by NSF Grants DMS-0854792, DMS-1206305, and PHY-1066293
- © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 775-824
- MSC (2010): Primary 17B37; Secondary 17B67, 39A10, 82B43
- DOI: https://doi.org/10.1090/jams/851
- MathSciNet review: 3486172
Dedicated: To Andrei Zelevinsky (1953–2013). Advisor, mentor, colleague, and friend.