Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of $\operatorname {SL}_2(\mathbb {Z})$
HTML articles powered by AMS MathViewer
- by Hee Oh and Dale Winter;
- J. Amer. Math. Soc. 29 (2016), 1069-1115
- DOI: https://doi.org/10.1090/jams/849
- Published electronically: November 2, 2015
- PDF | Request permission
Abstract:
Let $\Gamma <\operatorname {SL}_2(\mathbb {Z})$ be a non-elementary finitely generated subgroup and let $\Gamma (q)$ be its congruence subgroup of level $q$ for each $q\in \mathbb N$. We obtain an asymptotic formula for the matrix coefficients of $L^2(\Gamma (q) \backslash \operatorname {SL}_2(\mathbb {R}))$ with a uniform exponential error term for all square free $q$ with no small prime divisors. As an application we establish a uniform resonance free half plane for the resolvent of the Laplacian on $\Gamma (q)\backslash \mathbb {H}^2$ over $q$ as above. Our approach is to extend Dolgopyat’s dynamical proof of exponential mixing of the geodesic flow uniformly over congruence covers, by establishing uniform spectral bounds for congruence transfer operators associated to the geodesic flow. One of the key ingredients is the expander theory due to Bourgain-Gamburd-Sarnak.References
- Artur Avila, Sébastien Gouëzel, and Jean-Christophe Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci. 104 (2006), 143–211. MR 2264836, DOI 10.1007/s10240-006-0001-5
- Martine Babillot, On the mixing property for hyperbolic systems, Israel J. Math. 129 (2002), 61–76. MR 1910932, DOI 10.1007/BF02773153
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- David Borthwick, Spectral theory of infinite-area hyperbolic surfaces, Progress in Mathematics, vol. 256, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2344504, DOI 10.1007/978-0-8176-4653-0
- Rufus Bowen, Markov partitions for Axiom $\textrm {A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 725–747. MR 277003, DOI 10.2307/2373370
- B. H. Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), no. 1, 229–274. MR 1317633, DOI 10.1215/S0012-7094-95-07709-6
- Jean Bourgain and Alex Gamburd, Uniform expansion bounds for Cayley graphs of $\textrm {SL}_2(\Bbb F_p)$, Ann. of Math. (2) 167 (2008), no. 2, 625–642. MR 2415383, DOI 10.4007/annals.2008.167.625
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Generalization of Selberg’s $\frac {3}{16}$ theorem and affine sieve, Acta Math. 207 (2011), no. 2, 255–290. MR 2892611, DOI 10.1007/s11511-012-0070-x
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Affine linear sieve, expanders, and sum-product, Invent. Math. 179 (2010), no. 3, 559–644. MR 2587341, DOI 10.1007/s00222-009-0225-3
- Jean Bourgain and Alex Kontorovich, On Zaremba’s conjecture, Ann. of Math. (2) 180 (2014), no. 1, 137–196. MR 3194813, DOI 10.4007/annals.2014.180.1.3
- Jean Bourgain, Alex Kontorovich, and Michael Magee, Thermodynamic expansion to arbitrary moduli. Preprint.
- Jean Bourgain, Alex Kontorovich, and Peter Sarnak, Sector estimates for hyperbolic isometries, Geom. Funct. Anal. 20 (2010), no. 5, 1175–1200. MR 2746950, DOI 10.1007/s00039-010-0092-5
- Jack Button, All Fuchsian Schottky groups are classical Schottky groups, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 117–125. MR 1668339, DOI 10.2140/gtm.1998.1.117
- Jean Bourgain and Péter P. Varjú, Expansion in $SL_d(\textbf {Z}/q\textbf {Z}),\,q$ arbitrary, Invent. Math. 188 (2012), no. 1, 151–173. MR 2897695, DOI 10.1007/s00222-011-0345-4
- N. Chernov, Invariant measures for hyperbolic dynamical systems, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 321–407. MR 1928521, DOI 10.1016/S1874-575X(02)80006-6
- Yves Colin De Verdiere, Théorie spectrale des surfaces de Riemann d’aire infinite, Astérisque 132 (1985), 259–275.
- Dmitry Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 357–390. MR 1626749, DOI 10.2307/121012
- Boris Hasselblatt and Anatole Katok (eds.), Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, 2002.
- A. Salehi Golsefidy and Péter P. Varjú, Expansion in perfect groups, Geom. Funct. Anal. 22 (2012), no. 6, 1832–1891. MR 3000503, DOI 10.1007/s00039-012-0190-7
- Colin Guillarmou and Frédéric Naud, Wave decay on convex co-compact hyperbolic manifolds, Comm. Math. Phys. 287 (2009), no. 2, 489–511. MR 2481747, DOI 10.1007/s00220-008-0706-z
- Laurent Guillopé, Kevin K. Lin, and Maciej Zworski, The Selberg zeta function for convex co-compact Schottky groups, Comm. Math. Phys. 245 (2004), no. 1, 149–176. MR 2036371, DOI 10.1007/s00220-003-1007-1
- Min Lee and Hee Oh, Effective circle count for Apollonian packings and closed horospheres, Geom. Funct. Anal. 23 (2013), no. 2, 580–621. MR 3053757, DOI 10.1007/s00039-013-0217-8
- Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875, DOI 10.1016/0022-1236(82)90050-7
- Michael Magee, Hee Oh, and Dale Winter, Expanding maps and continued fractions, available at arXiv:1412.4284.
- Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), no. 2, 260–310. MR 916753, DOI 10.1016/0022-1236(87)90097-8
- Gregory Margulis, Amir Mohammadi, and Hee Oh, Closed geodesics and holonomies for Kleinian manifolds, Geom. Funct. Anal. 24 (2014), no. 5, 1608–1636. MR 3261636, DOI 10.1007/s00039-014-0299-y
- Amir Mohammadi and Hee Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 837–897. MR 3336838, DOI 10.4171/JEMS/520
- Frédéric Naud, Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 1, 116–153 (English, with English and French summaries). MR 2136484, DOI 10.1016/j.ansens.2004.11.002
- Hee Oh and Nimish A. Shah, Equidistribution and counting for orbits of geometrically finite hyperbolic groups, J. Amer. Math. Soc. 26 (2013), no. 2, 511–562. MR 3011420, DOI 10.1090/S0894-0347-2012-00749-8
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241–273. MR 450547, DOI 10.1007/BF02392046
- S. J. Patterson, On a lattice-point problem in hyperbolic space and related questions in spectral theory, Ark. Mat. 26 (1988), no. 1, 167–172. MR 948288, DOI 10.1007/BF02386116
- Mark Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985), no. 3, 413–426. MR 807065, DOI 10.1007/BF01388579
- Vesselin Pektov and Luchezar Stoyanov, Spectral estimates for Ruelle transfer operators with two parameters and applications, available at arXiv:1409.0721.
- Thomas Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.) 95 (2003), 96p.
- M. Ratner, Markov partitions for Anosov flows on $n$-dimensional manifolds, Israel J. Math. 15 (1973), 92–114. MR 339282, DOI 10.1007/BF02771776
- Daniel J. Rudolph, Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 491–512 (1983). MR 721736, DOI 10.1017/S0143385700001735
- Barbara Schapira, Equidistribution of the horocycles of a geometrically finite surface, Int. Math. Res. Not. 40 (2005), 2447–2471. MR 2180113, DOI 10.1155/IMRN.2005.2447
- Luchezar Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity 24 (2011), no. 4, 1089–1120. MR 2776112, DOI 10.1088/0951-7715/24/4/005
- Luchezar Stoyanov, On the Ruelle-Perron-Frobenius theorem, Asymptot. Anal. 43 (2005), no. 1-2, 131–150. MR 2148129
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586
- Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277. MR 766265, DOI 10.1007/BF02392379
- Ilya Vinogradov, Effective bisector estimate with application to Apollonian circle packings, Int. Math. Res. Not. IMRN 12 (2014), 3217–3262. MR 3217660, DOI 10.1093/imrn/rnt037
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ, 1941. MR 5923
Bibliographic Information
- Hee Oh
- Affiliation: Mathematics Department, Yale University, New Haven, Connecticut 06511 and Korea Institute for Advanced Study, Seoul, Korea
- MR Author ID: 615083
- Email: hee.oh@yale.edu
- Dale Winter
- Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02906
- Email: dale_winter@brown.edu
- Received by editor(s): April 24, 2015
- Received by editor(s) in revised form: August 26, 2015
- Published electronically: November 2, 2015
- Additional Notes: The first author was supported in part by NSF Grant 1361673.
- © Copyright 2015 American Mathematical Society
- Journal: J. Amer. Math. Soc. 29 (2016), 1069-1115
- MSC (2010): Primary 37D35, 22E40, 37A25, 37D40, 11F72; Secondary 37F30, 11N45
- DOI: https://doi.org/10.1090/jams/849
- MathSciNet review: 3522610
Dedicated: Dedicated to Peter Sarnak on the occasion of his sixty-first birthday.