Weak mixing directions in non-arithmetic Veech surfaces
HTML articles powered by AMS MathViewer
- by Artur Avila and Vincent Delecroix;
- J. Amer. Math. Soc. 29 (2016), 1167-1208
- DOI: https://doi.org/10.1090/jams/856
- Published electronically: January 13, 2016
Abstract:
We show that the billiard in a regular polygon is weak mixing in almost every invariant surface, except in the trivial cases which give rise to lattices in the plane (triangle, square, and hexagon). More generally, we study the problem of prevalence of weak mixing for the directional flow in an arbitrary non-arithmetic Veech surface and show that the Hausdorff dimension of the set of non-weak mixing directions is not full. We also provide a necessary condition, verified, for instance, by the Veech surface corresponding to the billiard in the pentagon, for the set of non-weak mixing directions to have a positive Hausdorff dimension.References
- Artur Avila and Vincent Delecroix, Large deviations for algebraic $\textrm {SL}_2(\mathbb {R})$-invariant measures in moduli space. In progress.
- Artur Avila and Giovanni Forni, Weak mixing for interval exchange transformations and translation flows, Ann. of Math. (2) 165 (2007), no. 2, 637–664. MR 2299743, DOI 10.4007/annals.2007.165.637
- Artur Avila and Giovanni Forni, Weak mixing in L shaped billiards. In progress.
- Artur Avila and Marcelo Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math. 198 (2007), no. 1, 1–56. MR 2316268, DOI 10.1007/s11511-007-0012-1
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- Irene I. Bouw and Martin Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2) 172 (2010), no. 1, 139–185. MR 2680418, DOI 10.4007/annals.2010.172.139
- Xavier Bressaud, Alexander I. Bufetov, and Pascal Hubert, Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1, Proc. Lond. Math. Soc. (3) 109 (2014), no. 2, 483–522. MR 3254932, DOI 10.1112/plms/pdu009
- Xavier Bressaud, Fabien Durand, and Alejandro Maass, Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems, J. London Math. Soc. (2) 72 (2005), no. 3, 799–816. MR 2190338, DOI 10.1112/S0024610705006800
- Xavier Bressaud, Fabien Durand, and Alejandro Maass, On the eigenvalues of finite rank Bratteli-Vershik dynamical systems, Ergodic Theory Dynam. Systems 30 (2010), no. 3, 639–664. MR 2643706, DOI 10.1017/S0143385709000236
- Kariane Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004), no. 4, 871–908. MR 2083470, DOI 10.1090/S0894-0347-04-00461-8
- Jon Chaika and Alex Eskin, Every flat surface is Birkhoff and Oseledets generic in almost every direction, J. Mod. Dyn. 9 (2015), 1–23. MR 3395258, DOI 10.3934/jmd.2015.9.1
- Kariane Calta and John Smillie, Algebraically periodic translation surfaces, J. Mod. Dyn. 2 (2008), no. 2, 209–248. MR 2383267, DOI 10.3934/jmd.2008.2.209
- Alex Eskin and Carlos Matheus, A coding-free simplicity criterion for the Lyapunov exponents of Teichmüller curves, Geom. Dedicata 179 (2015), 45–67. MR 3424657, DOI 10.1007/s10711-015-0067-7
- Giovanni Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), no. 1, 1–103. MR 1888794, DOI 10.2307/3062150
- M. Guenais and F. Parreau, Valeurs propres de transformations liées aux rotations irrationnelles et aux fonctions en escalier, available at arXiv:math/0605250v1.
- Eugene Gutkin and Chris Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), no. 2, 191–213. MR 1760625, DOI 10.1215/S0012-7094-00-10321-3
- W. Patrick Hooper, Grid graphs and lattice surfaces, Int. Math. Res. Not. IMRN 12 (2013), 2657–2698. MR 3071661, DOI 10.1093/imrn/rns124
- Pascal Hubert, Luca Marchese, and Corinna Ulcigrai, Lagrange spectra in Teichmüller dynamics via renormalization, Geom. Funct. Anal. 25 (2015), no. 1, 180–255. MR 3320892, DOI 10.1007/s00039-015-0321-z
- Pascal Hubert and Thomas A. Schmidt, An introduction to Veech surfaces, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 501–526. MR 2186246, DOI 10.1016/S1874-575X(06)80031-7
- Anatole Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math. 35 (1980), no. 4, 301–310. MR 594335, DOI 10.1007/BF02760655
- Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25–31. MR 357739, DOI 10.1007/BF01236981
- Richard Kenyon and John Smillie, Billiards on rational-angled triangles, Comment. Math. Helv. 75 (2000), no. 1, 65–108. MR 1760496, DOI 10.1007/s000140050113
- Steven Kerckhoff, Howard Masur, and John Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), no. 2, 293–311. MR 855297, DOI 10.2307/1971280
- Pascal Hubert and Erwan Lanneau, Veech groups without parabolic elements, Duke Math. J. 133 (2006), no. 2, 335–346. MR 2225696, DOI 10.1215/S0012-7094-06-13326-4
- Erwan Lanneau and Duc-Manh Nguyen, Teichmüller curves generated by Weierstrass Prym eigenforms in genus 3 and genus 4, J. Topol. 7 (2014), no. 2, 475–522. MR 3217628, DOI 10.1112/jtopol/jtt036
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169–200. MR 644018, DOI 10.2307/1971341
- Howard Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992), no. 3, 387–442. MR 1167101, DOI 10.1215/S0012-7094-92-06613-0
- Curtis T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003), no. 4, 857–885. MR 1992827, DOI 10.1090/S0894-0347-03-00432-6
- Curtis T. McMullen, Prym varieties and Teichmüller curves, Duke Math. J. 133 (2006), no. 3, 569–590. MR 2228463, DOI 10.1215/S0012-7094-06-13335-5
- Curtis T. McMullen, Dynamics of $\textrm {SL}_2(\Bbb R)$ over moduli space in genus two, Ann. of Math. (2) 165 (2007), no. 2, 397–456. MR 2299738, DOI 10.4007/annals.2007.165.397
- Stefano Marmi, Pierre Moussa, and Jean-Cristophe Yoccoz, The cohomological equation for Roth type interval exchange transformations, J. Amer. Math. Soc. 18 (2005), 823–872.
- Howard Masur and Serge Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015–1089. MR 1928530, DOI 10.1016/S1874-575X(02)80015-7
- Martin Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006), no. 2, 327–344. MR 2188128, DOI 10.1090/S0894-0347-05-00512-6
- William A. Stein et al., Sage Mathematics Software (Version 5.0). The Sage Development Team, http://www.sagemath.org.
- John Smillie and Barak Weiss, Characterizations of lattice surfaces, Invent. Math. 180 (2010), no. 3, 535–557. MR 2609249, DOI 10.1007/s00222-010-0236-0
- William A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), no. 1, 201–242. MR 644019, DOI 10.2307/1971391
- William A. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties, Amer. J. Math. 106 (1984), no. 6, 1331–1359. MR 765582, DOI 10.2307/2374396
- W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583. MR 1005006, DOI 10.1007/BF01388890
- Clayton C. Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 1019–1042. MR 1645350, DOI 10.1017/S0143385798117479
- Alex Wright, Schwarz triangle mappings and Teichmüller curves: the Veech-Ward-Bouw-Möller curves, Geom. Funct. Anal. 23 (2013), no. 2, 776–809. MR 3053761, DOI 10.1007/s00039-013-0221-z
Bibliographic Information
- Artur Avila
- Affiliation: CNRS UMR 7586, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France & IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil
- Email: artur@math.jussieu.fr
- Vincent Delecroix
- Affiliation: CNRS UMR 7586, Instittut de Mathématiques de Jussieu-Paris Rive Gauche, Bâtiment Sophie Germain, 75205 Paris Cedex 13, France
- Address at time of publication: LaBRI, UMR 5800, Bãtiment A30, 351, cours de la Libãration 33405 Talence cedex, France.
- Email: delecroix@math.jussieu.fr
- Received by editor(s): June 28, 2013
- Received by editor(s) in revised form: July 6, 2015, October 4, 2015, and November 30, 2015
- Published electronically: January 13, 2016
- Additional Notes: The authors were partially supported by the ERC Starting Grant “Quasiperiodic” and by the Balzan project of Jacob Palis.
- © Copyright 2016 by the authors under Creative Commons Attribution 3.0 License (CC BY NC ND)
- Journal: J. Amer. Math. Soc. 29 (2016), 1167-1208
- MSC (2010): Primary 37A05, 37E35
- DOI: https://doi.org/10.1090/jams/856
- MathSciNet review: 3522612