Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients
HTML articles powered by AMS MathViewer
- by Jonathan Breuer and Maurice Duits;
- J. Amer. Math. Soc. 30 (2017), 27-66
- DOI: https://doi.org/10.1090/jams/854
- Published electronically: January 28, 2016
- PDF | Request permission
Abstract:
We study fluctuations of linear statistics corresponding to smooth functions for certain biorthogonal ensembles. We study those biorthogonal ensembles for which the underlying biorthogonal family satisfies a finite term recurrence and describe the asymptotic fluctuations using right limits of the recurrence matrix. As a consequence, we show that whenever the right limit is a Laurent matrix, a central limit theorem holds. We will also discuss the implications for orthogonal polynomial ensembles. In particular, we obtain a central limit theorem for the orthogonal polynomial ensemble associated with any measure belonging to the Nevai class of an interval. Our results also extend previous results on unitary ensembles in the one-cut case. Finally, we will illustrate our results by deriving central limit theorems for the Hahn ensemble for lozenge tilings of a hexagon and for the Hermitian two matrix model.References
- Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010. MR 2760897
- J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete orthogonal polynomials, Annals of Mathematics Studies, vol. 164, Princeton University Press, Princeton, NJ, 2007. Asymptotics and applications. MR 2283089
- Estelle L. Basor and Harold Widom, On a Toeplitz determinant identity of Borodin and Okounkov, Integral Equations Operator Theory 37 (2000), no. 4, 397–401. MR 1780119, DOI 10.1007/BF01192828
- M. Bertola, B. Eynard, and J. Harnad, Duality, biorthogonal polynomials and multi-matrix models, Comm. Math. Phys. 229 (2002), no. 1, 73–120. MR 1917675, DOI 10.1007/s002200200663
- Alexei Borodin, Biorthogonal ensembles, Nuclear Phys. B 536 (1999), no. 3, 704–732. MR 1663328, DOI 10.1016/S0550-3213(98)00642-7
- Alexei Borodin and Patrik L. Ferrari, Anisotropic growth of random surfaces in $2+1$ dimensions, Comm. Math. Phys. 325 (2014), no. 2, 603–684. MR 3148098, DOI 10.1007/s00220-013-1823-x
- Alexei Borodin, CLT for spectra of submatrices of Wigner random matrices, Mosc. Math. J. 14 (2014), no. 1, 29–38, 170 (English, with English and Russian summaries). MR 3221945, DOI 10.17323/1609-4514-2014-14-1-29-38
- A. Borodin and A. Bufetov, A CLT for Plancherel representations of the infinite-dimensional unitary group, available at arXiv:1203.3010., DOI 10.1007/s10958-013-1257-1
- Alexei Borodin and Vadim Gorin, General $\beta$-Jacobi corners process and the Gaussian free field, Comm. Pure Appl. Math. 68 (2015), no. 10, 1774–1844. MR 3385342, DOI 10.1002/cpa.21546
- Jonathan Breuer, Sine kernel asymptotics for a class of singular measures, J. Approx. Theory 163 (2011), no. 10, 1478–1491. MR 2832737, DOI 10.1016/j.jat.2011.05.006
- Jonathan Breuer and Maurice Duits, The Nevai condition and a local law of large numbers for orthogonal polynomial ensembles, Adv. Math. 265 (2014), 441–484. MR 3255467, DOI 10.1016/j.aim.2014.07.026
- Jonathan Breuer, Yoram Last, and Barry Simon, The Nevai condition, Constr. Approx. 32 (2010), no. 2, 221–254. MR 2677881, DOI 10.1007/s00365-009-9055-1
- Jonathan Breuer and Barry Simon, Natural boundaries and spectral theory, Adv. Math. 226 (2011), no. 6, 4902–4920. MR 2775889, DOI 10.1016/j.aim.2010.12.019
- Albrecht Böttcher and Bernd Silbermann, Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999. MR 1724795, DOI 10.1007/978-1-4612-1426-7
- Alexei Borodin, Determinantal point processes, The Oxford handbook of random matrix theory, Oxford Univ. Press, Oxford, 2011, pp. 231–249. MR 2932631
- Ovidiu Costin and Joel L. Lebowitz, Gaussian fluctuation in random matrices, Phys. Rev. Lett. 75 (1995), no. 1, 69–72. MR 3155254, DOI 10.1103/PhysRevLett.75.69
- David Damanik, Rowan Killip, and Barry Simon, Perturbations of orthogonal polynomials with periodic recursion coefficients, Ann. of Math. (2) 171 (2010), no. 3, 1931–2010. MR 2680401, DOI 10.4007/annals.2010.171.1931
- P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1677884
- P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), no. 11, 1335–1425. MR 1702716, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
- P. Deift, T. Kriecherbauer, K. T-R McLaughlin, S. Venakides, and X. Zhou, Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), no. 12, 1491–1552. MR 1711036, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO;2-R
- Sergey A. Denisov, On Rakhmanov’s theorem for Jacobi matrices, Proc. Amer. Math. Soc. 132 (2004), no. 3, 847–852. MR 2019964, DOI 10.1090/S0002-9939-03-07157-0
- Persi Diaconis, Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 2, 155–178. MR 1962294, DOI 10.1090/S0273-0979-03-00975-3
- Maurice Duits, Gaussian free field in an interlacing particle system with two jump rates, Comm. Pure Appl. Math. 66 (2013), no. 4, 600–643. MR 3020314, DOI 10.1002/cpa.21419
- Maurice Duits, Dries Geudens, and Arno B. J. Kuijlaars, A vector equilibrium problem for the two-matrix model in the quartic/quadratic case, Nonlinearity 24 (2011), no. 3, 951–993. MR 2772631, DOI 10.1088/0951-7715/24/3/012
- Maurice Duits, Arno B. J. Kuijlaars, and Man Yue Mo, The Hermitian two matrix model with an even quartic potential, Mem. Amer. Math. Soc. 217 (2012), no. 1022, v+105. MR 2934329, DOI 10.1090/S0065-9266-2011-00639-8
- Ioana Dumitriu and Elliot Paquette, Global fluctuations for linear statistics of $\beta$-Jacobi ensembles, Random Matrices Theory Appl. 1 (2012), no. 4, 1250013, 60. MR 3039374, DOI 10.1142/S201032631250013X
- T. Ehrhardt, A generalization of Pincus’ formula and Toeplitz operator determinants, Arch. Math. (Basel) 80 (2003), no. 3, 302–309. MR 1981184, DOI 10.1007/s00013-003-0470-4
- Nicholas M. Ercolani and Kenneth T.-R. McLaughlin, Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model, Phys. D 152/153 (2001), 232–268. Advances in nonlinear mathematics and science. MR 1837912, DOI 10.1016/S0167-2789(01)00173-7
- Bertrand Eynard and Madan Lal Mehta, Matrices coupled in a chain. I. Eigenvalue correlations, J. Phys. A 31 (1998), no. 19, 4449–4456. MR 1628667, DOI 10.1088/0305-4470/31/19/010
- P. J. Forrester, Log-gases and random matrices, London Mathematical Society Monographs Series, vol. 34, Princeton University Press, Princeton, NJ, 2010. MR 2641363, DOI 10.1515/9781400835416
- Israel Gohberg, Seymour Goldberg, and Nahum Krupnik, Traces and determinants of linear operators, Operator Theory: Advances and Applications, vol. 116, Birkhäuser Verlag, Basel, 2000. MR 1744872, DOI 10.1007/978-3-0348-8401-3
- J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág, Determinantal processes and independence, Probab. Surv. 3 (2006), 206–229. MR 2216966, DOI 10.1214/154957806000000078
- Kurt Johansson, On random matrices from the compact classical groups, Ann. of Math. (2) 145 (1997), no. 3, 519–545. MR 1454702, DOI 10.2307/2951843
- Kurt Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91 (1998), no. 1, 151–204. MR 1487983, DOI 10.1215/S0012-7094-98-09108-6
- Kurt Johansson, Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields 123 (2002), no. 2, 225–280. MR 1900323, DOI 10.1007/s004400100187
- Kurt Johansson, Random matrices and determinantal processes, Mathematical statistical physics, Elsevier B. V., Amsterdam, 2006, pp. 1–55. MR 2581882, DOI 10.1016/S0924-8099(06)80038-7
- Alexander Kiselev, Yoram Last, and Barry Simon, Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Comm. Math. Phys. 194 (1998), no. 1, 1–45. MR 1628290, DOI 10.1007/s002200050346
- Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw, Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. With a foreword by Tom H. Koornwinder. MR 2656096, DOI 10.1007/978-3-642-05014-5
- T. Kriecherbauer and M. Shcherbina, Fluctuations of eigenvalues of matrix models and their applications, available at arXiv:math-ph/1003.6121.
- Arno B. J. Kuijlaars, Multiple orthogonal polynomial ensembles, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., vol. 507, Amer. Math. Soc., Providence, RI, 2010, pp. 155–176. MR 2647568, DOI 10.1090/conm/507/09958
- A. B. J. Kuijlaars and W. Van Assche, The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients, J. Approx. Theory 99 (1999), no. 1, 167–197. MR 1696553, DOI 10.1006/jath.1999.3316
- Wolfgang König, Orthogonal polynomial ensembles in probability theory, Probab. Surv. 2 (2005), 385–447. MR 2203677, DOI 10.1214/154957805100000177
- Yoram Last, Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments, Sturm-Liouville theory, Birkhäuser, Basel, 2005, pp. 99–120. MR 2145079, DOI 10.1007/3-7643-7359-8_{5}
- Yoram Last and Barry Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), no. 2, 329–367. MR 1666767, DOI 10.1007/s002220050288
- Yoram Last and Barry Simon, The essential spectrum of Schrödinger, Jacobi, and CMV operators, J. Anal. Math. 98 (2006), 183–220. MR 2254485, DOI 10.1007/BF02790275
- Russell Lyons, Determinantal probability measures, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 167–212. MR 2031202, DOI 10.1007/s10240-003-0016-0
- P. B. Naĭman, On the theory of periodic and limit-periodic Jacobian matrices, Dokl. Akad. Nauk SSSR 143 (1962), 277–279 (Russian). MR 142558
- P. B. Naĭman, On the spectral theory of non-symmetric periodic Jacobi matrices, Zap. Meh.-Mat. Fak. Har′kov. Gos. Univ. i Har′kov. Mat. Obšč. (4) 30 (1964), 138–151 (Russian). MR 218915
- L. Pastur, Limiting laws of linear eigenvalue statistics for Hermitian matrix models, J. Math. Phys. 47 (2006), no. 10, 103303, 22. MR 2268864, DOI 10.1063/1.2356796
- Leonid Pastur and Mariya Shcherbina, Eigenvalue distribution of large random matrices, Mathematical Surveys and Monographs, vol. 171, American Mathematical Society, Providence, RI, 2011. MR 2808038, DOI 10.1090/surv/171
- D. B. Pearson, Singular continuous measures in scattering theory, Comm. Math. Phys. 60 (1978), no. 1, 13–36. MR 484145, DOI 10.1007/BF01609472
- Leonid Petrov, Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field, Ann. Probab. 43 (2015), no. 1, 1–43. MR 3298467, DOI 10.1214/12-AOP823
- E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials, Math. USSR Sb. 32 (1977), 199–213., DOI 10.1070/SM1977v032n02ABEH002377
- E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials II, Math. USSR Sb. 46 (1983), 105–117., DOI 10.1070/SM1983v046n01ABEH002749
- Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 493421
- Christian Remling, The absolutely continuous spectrum of Jacobi matrices, Ann. of Math. (2) 174 (2011), no. 1, 125–171. MR 2811596, DOI 10.4007/annals.2011.174.1.4
- M. Shcherbina, Fluctuations of linear eigenvalue statistics of $\beta$ matrix models in the multi-cut regime, J. Stat. Phys. 151 (2013), no. 6, 1004–1034. MR 3063494, DOI 10.1007/s10955-013-0740-x
- Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153, DOI 10.1090/surv/120
- Barry Simon, Szegő’s theorem and its descendants, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011. Spectral theory for $L^2$ perturbations of orthogonal polynomials. MR 2743058
- Alexander B. Soshnikov, Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields, J. Statist. Phys. 100 (2000), no. 3-4, 491–522. MR 1788476, DOI 10.1023/A:1018672622921
- Alexander Soshnikov, Gaussian limit for determinantal random point fields, Ann. Probab. 30 (2002), no. 1, 171–187. MR 1894104, DOI 10.1214/aop/1020107764
- A. Soshnikov, Determinantal random point fields, Uspekhi Mat. Nauk 55 (2000), no. 5(335), 107–160 (Russian, with Russian summary); English transl., Russian Math. Surveys 55 (2000), no. 5, 923–975. MR 1799012, DOI 10.1070/rm2000v055n05ABEH000321
- A. Soshnikov, Determinantal random point fields, Encyclopedia of Mathematical Physics, Elsevier, Oxford, 2006., DOI 10.1070/RM2000v055n05ABEH000321
- H. Stahl and V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, Vol. 43, Cambridge University Press, Cambridge, 1992., DOI 10.1017/CBO9780511759420
- Gernot Akemann, Jinho Baik, and Philippe Di Francesco (eds.), The Oxford handbook of random matrix theory, Oxford University Press, Oxford, 2011. MR 2920518
Bibliographic Information
- Jonathan Breuer
- Affiliation: Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Email: jbreuer@math.huji.ac.il
- Maurice Duits
- Affiliation: Department of Mathematics, Royal Institute of Technology (KTH), Lindstedtsvägen 25, SE-10044 Stockholm, Sweden
- MR Author ID: 796143
- Email: duits@kth.se
- Received by editor(s): October 8, 2013
- Received by editor(s) in revised form: September 11, 2015, and November 30, 2015
- Published electronically: January 28, 2016
- Additional Notes: The first author is supported in part by the US-Israel Binational Science Foundation (BSF) Grant no. 2010348 and by the Israel Science Foundation (ISF) Grant no. 1105/10.
The second author is supported in part by Grant no. KAW 2010.0063 from the Knut and Alice Wallenberg Foundation and by the Swedish Research Council (VR) Grant no. 2012-3128. - © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 27-66
- MSC (2010): Primary 15B52, 42C05, 60F05
- DOI: https://doi.org/10.1090/jams/854
- MathSciNet review: 3556288