The nonvanishing hypothesis at infinity for Rankin-Selberg convolutions
HTML articles powered by AMS MathViewer
- by Binyong Sun;
- J. Amer. Math. Soc. 30 (2017), 1-25
- DOI: https://doi.org/10.1090/jams/855
- Published electronically: January 8, 2016
- PDF | Request permission
Abstract:
We prove the nonvanishing hypothesis at infinity for Rankin-Selberg convolutions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$.References
- Avraham Aizenbud and Dmitry Gourevitch, Multiplicity one theorem for $(\textrm {GL}_{n+1}(\Bbb R),\textrm {GL}_n(\Bbb R))$, Selecta Math. (N.S.) 15 (2009), no. 2, 271–294. MR 2529937, DOI 10.1007/s00029-009-0544-7
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Joseph Bernstein and Bernhard Krötz, Smooth Fréchet globalizations of Harish-Chandra modules, Israel J. Math. 199 (2014), no. 1, 45–111. MR 3219530, DOI 10.1007/s11856-013-0056-1
- W. Casselman, Canonical extensions of Harish-Chandra modules to representations of $G$, Canad. J. Math. 41 (1989), no. 3, 385–438. MR 1013462, DOI 10.4153/CJM-1989-019-5
- Laurent Clozel, Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 77–159 (French). MR 1044819
- Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197, DOI 10.1090/gsm/011
- Mogens Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. (2) 111 (1980), no. 2, 253–311. MR 569073, DOI 10.2307/1971201
- H. Grobner and M. Harris, Whittaker periods, motivic periods, and special values of tensor product L-functions, J. Inst. Math. Jussieu (2015), 1–59.
- E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), no. 1, 664–699 (German). MR 1513069, DOI 10.1007/BF01565437
- E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, Math. Ann. 114 (1937), no. 1, 1–28 (German). MR 1513122, DOI 10.1007/BF01594160
- E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. II, Math. Ann. 114 (1937), no. 1, 316–351 (German). MR 1513142, DOI 10.1007/BF01594180
- Hervé Jacquet, Archimedean Rankin-Selberg integrals, Automorphic forms and $L$-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 57–172. MR 2533003, DOI 10.1090/conm/489/09547
- Fabian Januszewski, Modular symbols for reductive groups and $p$-adic Rankin-Selberg convolutions over number fields, J. Reine Angew. Math. 653 (2011), 1–45. MR 2794624, DOI 10.1515/CRELLE.2011.018
- Fabian Januszewski, On $p$-adic $L$-functions for $\mathrm {GL}(n)\times \mathrm {GL}(n-1)$ over totally real fields, Int. Math. Res. Not. IMRN 17 (2015), 7884–7949. MR 3404005, DOI 10.1093/imrn/rnu181
- F. Januszewski, p-adic L-functions for Rankin-Selberg convolutions over number fields, available at arXiv:1501.04444., DOI 10.1007/s40316-016-0061-y
- F. Januszewski, On period relations for automorphic L-functions, available at arXiv:1504.06973., DOI 10.1090/tran/7527
- Hendrik Kasten and Claus-Günther Schmidt, The critical values of Rankin-Selberg convolutions, Int. J. Number Theory 9 (2013), no. 1, 205–256. MR 2997500, DOI 10.1142/S1793042112501345
- D. Kazhdan, B. Mazur, and C.-G. Schmidt, Relative modular symbols and Rankin-Selberg convolutions, J. Reine Angew. Math. 519 (2000), 97–141. MR 1739728, DOI 10.1515/crll.2000.019
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- Joachim Mahnkopf, Cohomology of arithmetic groups, parabolic subgroups and the special values of $L$-functions on $\textrm {GL}_n$, J. Inst. Math. Jussieu 4 (2005), no. 4, 553–637. MR 2171731, DOI 10.1017/S1474748005000186
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI 10.2307/1970351
- A. Raghuram, On the special values of certain Rankin-Selberg $L$-functions and applications to odd symmetric power $L$-functions of modular forms, Int. Math. Res. Not. IMRN 2 (2010), 334–372. MR 2581038, DOI 10.1093/imrn/rnp127
- A. Raghuram, Critical values of Rankin-Selberg L-functions for $\mathrm {GL}(n) \times \mathrm {GL}(n-1)$ and the symmetric cube L-functions for $\mathrm {GL}(2)$, Forum Math. DOI: 10.1515/forum-2014-0043.
- A. Raghuram and Freydoon Shahidi, Functoriality and special values of $L$-functions, Eisenstein series and applications, Progr. Math., vol. 258, Birkhäuser Boston, Boston, MA, 2008, pp. 271–293. MR 2402688, DOI 10.1007/978-0-8176-4639-4_{1}0
- A. Raghuram and F. Shahidi, On certain period relations for cusp forms on $\mathrm {GL}_n$, Int. Math. Res. Not. IMRN 2008 (2008), 23pp. DOI: 10.1093/imrn/rnn077.
- Claus-G. Schmidt, Relative modular symbols and $p$-adic Rankin-Selberg convolutions, Invent. Math. 112 (1993), no. 1, 31–76. MR 1207477, DOI 10.1007/BF01232425
- C.-G. Schmidt, Period relations and $p$-adic measures, Manuscripta Math. 106 (2001), no. 2, 177–201. MR 1865563, DOI 10.1007/PL00005884
- Binyong Sun, Positivity of matrix coefficients of representations with real infinitesimal characters, Israel J. Math. 170 (2009), 395–410. MR 2506332, DOI 10.1007/s11856-009-0034-9
- Binyong Sun, Bounding matrix coefficients for smooth vectors of tempered representations, Proc. Amer. Math. Soc. 137 (2009), no. 1, 353–357. MR 2439460, DOI 10.1090/S0002-9939-08-09598-1
- Binyong Sun and Chen-Bo Zhu, Multiplicity one theorems: the Archimedean case, Ann. of Math. (2) 175 (2012), no. 1, 23–44. MR 2874638, DOI 10.4007/annals.2012.175.1.2
- David A. Vogan Jr., Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), no. 1, 141–187. MR 750719, DOI 10.2307/2007074
- David A. Vogan Jr., The unitary dual of $\textrm {GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505. MR 827363, DOI 10.1007/BF01394418
- David A. Vogan Jr. and Gregg J. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), no. 1, 51–90. MR 762307
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- Nolan R. Wallach, Real reductive groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1992. MR 1170566
- Nolan R. Wallach, On the unitarizability of derived functor modules, Invent. Math. 78 (1984), no. 1, 131–141. MR 762359, DOI 10.1007/BF01388720
- Oded Yacobi, An analysis of the multiplicity spaces in branching of symplectic groups, Selecta Math. (N.S.) 16 (2010), no. 4, 819–855. MR 2734332, DOI 10.1007/s00029-010-0033-z
Bibliographic Information
- Binyong Sun
- Affiliation: Institute of Mathematics and Hua Loo-Keng Key Laboratory of Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, China
- MR Author ID: 805605
- Email: sun@math.ac.cn
- Received by editor(s): September 17, 2014
- Received by editor(s) in revised form: October 22, 2015, and November 30, 2015
- Published electronically: January 8, 2016
- Additional Notes: The author was supported by NSFC Grants 11222101, 11525105, 11321101, and 11531008.
- © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 1-25
- MSC (2010): Primary 22E47; Secondary 22E41
- DOI: https://doi.org/10.1090/jams/855
- MathSciNet review: 3556287