Higher order Fourier analysis of multiplicative functions and applications
Authors:
Nikos Frantzikinakis and Bernard Host
Journal:
J. Amer. Math. Soc. 30 (2017), 67-157
MSC (2010):
Primary 11N37; Secondary 05D10, 11N60, 11B30, 37A45.
DOI:
https://doi.org/10.1090/jams/857
Published electronically:
March 1, 2016
MathSciNet review:
3556289
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove a structure theorem for multiplicative functions which states that an arbitrary multiplicative function of modulus at most $1$ can be decomposed into two terms, one that is approximately periodic and another that has small Gowers uniformity norm of an arbitrary degree. The proof uses tools from higher order Fourier analysis and finitary ergodic theory, and some soft number theoretic input that comes in the form of an orthogonality criterion of Kátai. We use variants of this structure theorem to derive applications of number theoretic and combinatorial flavor: $(i)$ we give simple necessary and sufficient conditions for the Gowers norms (over $\mathbb {N}$) of a bounded multiplicative function to be zero, $(ii)$ generalizing a classical result of Daboussi we prove asymptotic orthogonality of multiplicative functions to “irrational” nilsequences, $(iii)$ we prove that for certain polynomials in two variables all “aperiodic” multiplicative functions satisfy Chowla’s zero mean conjecture, $(iv)$ we give the first partition regularity results for homogeneous quadratic equations in three variables, showing for example that on every partition of the integers into finitely many cells there exist distinct $x,y$ belonging to the same cell and $\lambda \in \mathbb {N}$ such that $16x^2+9y^2=\lambda ^2$, and the same holds for the equation $x^2-xy+y^2=\lambda ^2$.
- Vitaly Bergelson, Ergodic Ramsey theory—an update, Ergodic theory of ${\bf Z}^d$ actions (Warwick, 1993–1994) London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 1–61. MR 1411215, DOI https://doi.org/10.1017/CBO9780511662812.002
- Vitaly Bergelson, Multiplicatively large sets and ergodic Ramsey theory, Israel J. Math. 148 (2005), 23–40. Probability in mathematics. MR 2191223, DOI https://doi.org/10.1007/BF02775431
- Vitaly Bergelson, Bernard Host, and Bryna Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), no. 2, 261–303. With an appendix by Imre Ruzsa. MR 2138068, DOI https://doi.org/10.1007/s00222-004-0428-6
- V. Bergelson and J. Moreira, Ergodic theorem involving additive and multiplicative groups of a field and {x+y,xy} patterns, available at arXiv:1307.6242. To appear in Ergodic Theory Dynam. Systems.
- V. Bergelson and J. Moreira, Measure preserving actions of affine semigroups and {x+y,xy} patterns, available at arXiv:1509.07574.
- V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), no. 3, 725–753. MR 1325795, DOI https://doi.org/10.1090/S0894-0347-96-00194-4
- J. Bourgain, P. Sarnak, and T. Ziegler, Disjointness of Moebius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry, Dev. Math., vol. 28, Springer, New York, 2013, pp. 67–83. MR 2986954, DOI https://doi.org/10.1007/978-1-4614-4075-8_5
- T. D. Browning and S. Prendiville, A transference approach to a Roth-type theorem in the squares, available at arXiv:1510.00136.
- S. Chowla, The Riemann hypothesis and Hilbert’s tenth problem, Mathematics and its Applications, Vol. 4, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0177943
- Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. MR 1070979
- Hédi Daboussi, Fonctions multiplicatives presque périodiques B, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) Soc. Math. France, Paris, 1975, pp. 321–324. Astérisque, No. 24–25 (French). D’après un travail commun avec Hubert Delange. MR 0374074
- Hédi Daboussi and Hubert Delange, Quelques propriétés des fonctions multiplicatives de module au plus égal à $1$, C. R. Acad. Sci. Paris Sér. A 278 (1974), 657–660 (French). MR 332702
- Hédi Daboussi and Hubert Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc. (2) 26 (1982), no. 2, 245–264. MR 675168, DOI https://doi.org/10.1112/jlms/s2-26.2.245
- P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de “L’Enseignement Mathématique” [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI https://doi.org/10.1007/BF01388432
- John Friedlander and Henryk Iwaniec, The polynomial $X^2+Y^4$ captures its primes, Ann. of Math. (2) 148 (1998), no. 3, 945–1040. MR 1670065, DOI https://doi.org/10.2307/121034
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI https://doi.org/10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588. MR 1844079, DOI https://doi.org/10.1007/s00039-001-0332-9
- W. T. Gowers, Decompositions, approximate structure, transference, and the Hahn-Banach theorem, Bull. Lond. Math. Soc. 42 (2010), no. 4, 573–606. MR 2669681, DOI https://doi.org/10.1112/blms/bdq018
- W. T. Gowers and J. Wolf, Linear forms and quadratic uniformity for functions on $\Bbb Z_N$, J. Anal. Math. 115 (2011), 121–186. MR 2855036, DOI https://doi.org/10.1007/s11854-011-0026-7
- W. T. Gowers and J. Wolf, Linear forms and higher-degree uniformity for functions on $\Bbb F^n_p$, Geom. Funct. Anal. 21 (2011), no. 1, 36–69. MR 2773103, DOI https://doi.org/10.1007/s00039-010-0106-3
- Ron Graham, Old and new problems and results in Ramsey theory, Horizons of combinatorics, Bolyai Soc. Math. Stud., vol. 17, Springer, Berlin, 2008, pp. 105–118. MR 2432529, DOI https://doi.org/10.1007/978-3-540-77200-2_5
- Andrew Granville and K. Soundararajan, Large character sums: pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc. 20 (2007), no. 2, 357–384. MR 2276774, DOI https://doi.org/10.1090/S0894-0347-06-00536-4
- A. Granville and K. Soundararajan, The pretentious approach. To be published.
- Ben Green and Terence Tao, Quadratic uniformity of the Möbius function, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 1863–1935 (English, with English and French summaries). MR 2473624
- Ben Green and Terence Tao, An inverse theorem for the Gowers $U^3(G)$ norm, Proc. Edinb. Math. Soc. (2) 51 (2008), no. 1, 73–153. MR 2391635, DOI https://doi.org/10.1017/S0013091505000325
- Ben Green and Terence Tao, An arithmetic regularity lemma, an associated counting lemma, and applications, An irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., Budapest, 2010, pp. 261–334. MR 2815606, DOI https://doi.org/10.1007/978-3-642-14444-8_7
- Benjamin Green and Terence Tao, Linear equations in primes, Ann. of Math. (2) 171 (2010), no. 3, 1753–1850. MR 2680398, DOI https://doi.org/10.4007/annals.2010.171.1753
- Ben Green and Terence Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), no. 2, 465–540. MR 2877065, DOI https://doi.org/10.4007/annals.2012.175.2.2
- Ben Green and Terence Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2) 175 (2012), no. 2, 541–566. MR 2877066, DOI https://doi.org/10.4007/annals.2012.175.2.3
- Ben Green, Terence Tao, and Tamar Ziegler, An inverse theorem for the Gowers $U^{s+1}[N]$-norm, Ann. of Math. (2) 176 (2012), no. 2, 1231–1372. MR 2950773, DOI https://doi.org/10.4007/annals.2012.176.2.11
- Katalin Gyarmati and Imre Z. Ruzsa, A set of squares without arithmetic progressions, Acta Arith. 155 (2012), no. 1, 109–115. MR 2982433, DOI https://doi.org/10.4064/aa155-1-11
- G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hungar. 19 (1968), 365–403 (German). MR 230694, DOI https://doi.org/10.1007/BF01894515
- R. R. Hall, A sharp inequality of Halász type for the mean value of a multiplicative arithmetic function, Mathematika 42 (1995), no. 1, 144–157. MR 1346679, DOI https://doi.org/10.1112/S0025579300011426
- D. R. Heath-Brown, Primes represented by $x^3+2y^3$, Acta Math. 186 (2001), no. 1, 1–84. MR 1828372, DOI https://doi.org/10.1007/BF02392715
- D. R. Heath-Brown and B. Z. Moroz, Primes represented by binary cubic forms, Proc. London Math. Soc. (3) 84 (2002), no. 2, 257–288. MR 1881392, DOI https://doi.org/10.1112/plms/84.2.257
- D. R. Heath-Brown and B. Z. Moroz, On the representation of primes by cubic polynomials in two variables, Proc. London Math. Soc. (3) 88 (2004), no. 2, 289–312. MR 2032509, DOI https://doi.org/10.1112/S0024611503014497
- Harald Andres Helfgott, Root numbers and the parity problem, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Princeton University. MR 2704329
- H. A. Helfgott, The parity problem for reducible cubic forms, J. London Math. Soc. (2) 73 (2006), no. 2, 415–435. MR 2225495, DOI https://doi.org/10.1112/S0024610706022629
- H. Helfgott, The parity problem for irreducible polynomials, available at arXiv:0501177.
- Kevin Henriot, Logarithmic bounds for translation-invariant equations in squares, Int. Math. Res. Not. IMRN 23 (2015), 12540–12562. MR 3431629, DOI https://doi.org/10.1093/imrn/rnv062
- K. Henriot, Additive equations in dense variables, and truncated restriction estimates, available at arXiv:1508.05923.
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI https://doi.org/10.4007/annals.2005.161.397
- Bernard Host and Bryna Kra, Uniformity seminorms on $\ell ^\infty $ and applications, J. Anal. Math. 108 (2009), 219–276. MR 2544760, DOI https://doi.org/10.1007/s11854-009-0024-1
- I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hungar. 47 (1986), no. 1-2, 223–225. MR 836415, DOI https://doi.org/10.1007/BF01949145
- Eugen Keil, On a diagonal quadric in dense variables, Glasg. Math. J. 56 (2014), no. 3, 601–628. MR 3250267, DOI https://doi.org/10.1017/S0017089514000056
- E. Keil, Some refinements for translation invariant quadratic forms in dense sets, available at arXiv:1408.1535.
- Ayman Khalfalah and Endre Szemerédi, On the number of monochromatic solutions of $x+y=z^2$, Combin. Probab. Comput. 15 (2006), no. 1-2, 213–227. MR 2195583, DOI https://doi.org/10.1017/S0963548305007169
- A. Lachand, Entiers friables et formes binaires. Ph.D. Thesis (2014), Université de Lorraine, tel-01104211.
- A. Lachand, On the representation of friables by linear forms, available at arXiv:hal-01081277.
- E. Landau, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Göttinger Nachrichten (1918), 285–295.
- A. Leibman, Polynomial sequences in groups, J. Algebra 201 (1998), no. 1, 189–206. MR 1608723, DOI https://doi.org/10.1006/jabr.1997.7269
- A. Leibman, Polynomial mappings of groups, Israel J. Math. 129 (2002), 29–60. MR 1910931, DOI https://doi.org/10.1007/BF02773152
- A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 201–213. MR 2122919, DOI https://doi.org/10.1017/S0143385704000215
- A. Leibman, Rational sub-nilmanifolds of a compact nilmanifold, Ergodic Theory Dynam. Systems 26 (2006), no. 3, 787–798. MR 2237471, DOI https://doi.org/10.1017/S014338570500057X
- A. I. Mal′cev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9–32 (Russian). MR 0028842
- Lilian Matthiesen, Linear correlations amongst numbers represented by positive definite binary quadratic forms, Acta Arith. 154 (2012), no. 3, 235–306. MR 2949879, DOI https://doi.org/10.4064/aa154-3-2
- L. Matthiesen, A consequence of the factorisation theorem for polynomial orbits on nilmanifolds. Corrigendum, Acta Arith. 154 (2012), no. 3, 235–306.
- Lilian Matthiesen, Correlations of the divisor function, Proc. Lond. Math. Soc. (3) 104 (2012), no. 4, 827–858. MR 2908784, DOI https://doi.org/10.1112/plms/pdr046
- Lilian Matthiesen, Correlations of representation functions of binary quadratic forms, Acta Arith. 158 (2013), no. 3, 245–252. MR 3040665, DOI https://doi.org/10.4064/aa158-3-4
- L. Matthiesen, Generalized Fourier coefficients of multiplicative functions, available at arXiv:1405.1018.
- H. L. Montgomery and R. C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), no. 1, 69–82. MR 457371, DOI https://doi.org/10.1007/BF01390204
- M. Ram Murty and Jody Esmonde, Problems in algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 190, Springer-Verlag, New York, 2005. MR 2090972
- Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859
- Richard Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), no. 1, 424–470 (German). MR 1545354, DOI https://doi.org/10.1007/BF01188632
- A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 3-4, 355–386. MR 487031, DOI https://doi.org/10.1007/BF01901984
- I. Schur, Uber die Kongruenz $x^m + y^m = z^m \pmod {p}$, Jahresber. Dtsch. Math.-Ver. 25 (1917), 114–117.
- Matthew L. Smith, On solution-free sets for simultaneous quadratic and linear equations, J. Lond. Math. Soc. (2) 79 (2009), no. 2, 273–293. MR 2496514, DOI https://doi.org/10.1112/jlms/jdn073
- W. Sun, A structure theorem for multiplicative functions over the Gaussian integers and applications, available at arXiv:1405.0241. To appear in J. Anal. Math..
- B. Szegedy, On higher order Fourier analysis, available at arXiv:1203.2260.
- Terence Tao, A quantitative ergodic theory proof of Szemerédi’s theorem, Electron. J. Combin. 13 (2006), no. 1, Research Paper 99, 49. MR 2274314
- B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212–216.
- Mark Walters, Combinatorial proofs of the polynomial van der Waerden theorem and the polynomial Hales-Jewett theorem, J. London Math. Soc. (2) 61 (2000), no. 1, 1–12. MR 1745405, DOI https://doi.org/10.1112/S0024610799008388
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11N37, 05D10, 11N60, 11B30, 37A45.
Retrieve articles in all journals with MSC (2010): 11N37, 05D10, 11N60, 11B30, 37A45.
Additional Information
Nikos Frantzikinakis
Affiliation:
Department of Mathematics, University of Crete, Voutes University Campus, Heraklion 71003, Greece
MR Author ID:
712393
ORCID:
0000-0001-7392-5387
Email:
frantzikinakis@gmail.com
Bernard Host
Affiliation:
Laboratoire d’analyse et de mathématiques appliquées, Université Paris-Est Marne-la-Vallée, UMR CNRS 8050, 5 Bd Descartes, 77454 Marne la Vallée Cedex, France
MR Author ID:
88605
Email:
bernard.host@univ-mlv.fr
Keywords:
Multiplicative functions,
Gowers uniformity,
partition regularity,
inverse theorems,
Chowla conjecture.
Received by editor(s):
April 21, 2014
Received by editor(s) in revised form:
December 30, 2015, and January 25, 2016
Published electronically:
March 1, 2016
Additional Notes:
The first author was partially supported by Marie Curie IRG 248008.
The second author was partially supported by Centro de Modelamiento Matemático, Universitad de Chile.
Article copyright:
© Copyright 2016
American Mathematical Society