Gröbner methods for representations of combinatorial categories
HTML articles powered by AMS MathViewer
- by Steven V Sam and Andrew Snowden;
- J. Amer. Math. Soc. 30 (2017), 159-203
- DOI: https://doi.org/10.1090/jams/859
- Published electronically: March 17, 2016
- PDF | Request permission
Abstract:
Given a category $\mathcal {C}$ of a combinatorial nature, we study the following fundamental question: how do combinatorial properties of $\mathcal {C}$ affect algebraic properties of representations of $\mathcal {C}$? We prove two general results. The first gives a criterion for representations of $\mathcal {C}$ to admit a theory of Gröbner bases, from which we obtain a criterion for noetherianity. The second gives a criterion for a general “rationality” result for Hilbert series of representations of $\mathcal {C}$, and connects to the theory of formal languages.
Our work is motivated by recent work in the literature on representations of various specific categories. Our general criteria recover many of the results on these categories that had been proved by ad hoc means, and often yield cleaner proofs and stronger statements. For example, we give a new, more robust, proof that FI-modules (studied by Church, Ellenberg, and Farb), and certain generalizations, are noetherian; we prove the Lannes–Schwartz artinian conjecture from the study of generic representation theory of finite fields; we significantly improve the theory of $\Delta$-modules, introduced by Snowden in connection to syzygies of Segre embeddings; and we establish fundamental properties of twisted commutative algebras in positive characteristic.
References
- M. G. Barratt, Twisted Lie algebras, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin-New York, 1978, pp. 9–15. MR 513566
- Miklós Bóna, Combinatorics of permutations, 2nd ed., Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2012. With a foreword by Richard Stanley. MR 2919720, DOI 10.1201/b12210
- N. Chomsky and M. P. Schützenberger, The algebraic theory of context-free languages, Computer programming and formal systems, North-Holland, Amsterdam, 1963, pp. 118–161. MR 152391
- Thomas Church, Jordan S. Ellenberg, and Benson Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833–1910. MR 3357185, DOI 10.1215/00127094-3120274
- Thomas Church, Jordan S. Ellenberg, Benson Farb, and Rohit Nagpal, FI-modules over Noetherian rings, Geom. Topol. 18 (2014), no. 5, 2951–2984. MR 3285226, DOI 10.2140/gt.2014.18.2951
- Thomas Church and Benson Farb, Representation theory and homological stability, Adv. Math. 245 (2013), 250–314. MR 3084430, DOI 10.1016/j.aim.2013.06.016
- D. E. Cohen, On the laws of a metabelian variety, J. Algebra 5 (1967), 267–273. MR 206104, DOI 10.1016/0021-8693(67)90039-7
- Aurélien Djament, Foncteurs en grassmanniennes, filtration de Krull et cohomologie des foncteurs, Mém. Soc. Math. Fr. (N.S.) 111 (2007), xxii+213 pp. (2008) (French, with English and French summaries). MR 2482711, DOI 10.24033/msmf.423
- Aurélien Djament, Le foncteur $V\mapsto \Bbb F_2[V]^{\otimes 3}$ entre $\Bbb F_2$-espaces vectoriels est noethérien, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 459–490 (French, with English and French summaries). MR 2521424, DOI 10.5802/aif.2436
- A. Djament, Des propriétés de finitude des foncteurs polynomiaux, available at arXiv:1308.4698v1., DOI 10.4064/fm954-8-2015
- Aurélien Djament, La propriété noethérienne pour les foncteurs entre espaces vectoriels (d’après A. Putman, S. Sam et A. Snowden), Séminaire Bourbaki, Vol. 2014/2015, Astérisque, to appear.
- Aurélien Djament and Christine Vespa, Sur l’homologie des groupes orthogonaux et symplectiques à coefficients tordus, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 3, 395–459 (French, with English and French summaries). MR 2667021, DOI 10.24033/asens.2125
- Vladimir Dotsenko and Anton Khoroshkin, Gröbner bases for operads, Duke Math. J. 153 (2010), no. 2, 363–396. MR 2667136, DOI 10.1215/00127094-2010-026
- Vladimir Dotsenko and Anton Khoroshkin, Shuffle algebras, homology, and consecutive pattern avoidance, Algebra Number Theory 7 (2013), no. 3, 673–700. MR 3095223, DOI 10.2140/ant.2013.7.673
- Randall Dougherty, Functors on the category of finite sets, Trans. Amer. Math. Soc. 330 (1992), no. 2, 859–886. MR 1053111, DOI 10.1090/S0002-9947-1992-1053111-4
- Jan Draisma, Noetherianity up to symmetry, Combinatorial algebraic geometry, Lecture Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 33–61. MR 3329086, DOI 10.1007/978-3-319-04870-3_{2}
- Jan Draisma and Rob H. Eggermont, Plücker varieties and higher secants of Sato’s Grassmannian, available at arXiv:1402.1667v2. J. Reine Angew. Math., to appear., DOI 10.1515/crelle-2015-0035
- Jan Draisma and Jochen Kuttler, Bounded-rank tensors are defined in bounded degree, Duke Math. J. 163 (2014), no. 1, 35–63. MR 3161311, DOI 10.1215/00127094-2405170
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), 49–139. MR 65162, DOI 10.2307/1969702
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Benson Farb, Representation stability, Proceedings of the International Congress of Mathematicians, Volume II, pp. 1173–1196, available at arXiv:1404.4065v1.
- Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, and Andrei Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999), no. 2, 663–728. MR 1726705, DOI 10.2307/121092
- Vincent Franjou, Jean Lannes, and Lionel Schwartz, Autour de la cohomologie de Mac Lane des corps finis, Invent. Math. 115 (1994), no. 3, 513–538 (French, with English and French summaries). MR 1262942, DOI 10.1007/BF01231771
- Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209–270. MR 1427618, DOI 10.1007/s002220050119
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- Wee Liang Gan and Liping Li, Noetherian property of infinite EI categories, New York J. Math. 21 (2015), 369–382. MR 3358549
- Scott Garrabrant and Igor Pak, Pattern avoidance is not P-recursive, available at arXiv:1505.06508v1.
- Victor Ginzburg and Travis Schedler, Differential operators and BV structures in noncommutative geometry, Selecta Math. (N.S.) 16 (2010), no. 4, 673–730. MR 2734329, DOI 10.1007/s00029-010-0029-8
- Mitsuyasu Hashimoto, Determinantal ideals without minimal free resolutions, Nagoya Math. J. 118 (1990), 203–216. MR 1060711, DOI 10.1017/S0027763000003081
- Graham Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3) 2 (1952), 326–336. MR 49867, DOI 10.1112/plms/s3-2.1.326
- Christopher J. Hillar and Abraham Martín del Campo, Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals, J. Symbolic Comput. 50 (2013), 314–334. MR 2996883, DOI 10.1016/j.jsc.2012.06.006
- Christopher J. Hillar and Seth Sullivant, Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math. 229 (2012), no. 1, 1–25. MR 2854168, DOI 10.1016/j.aim.2011.08.009
- John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages, and computation, Addison-Wesley Series in Computer Science, Addison-Wesley Publishing Co., Reading, MA, 1979. MR 645539
- Anton Khoroshkin and Dmitri Piontkovski, On generating series of finitely presented operads, J. Algebra 426 (2015), 377–429. MR 3301915, DOI 10.1016/j.jalgebra.2014.12.012
- Henning Krause, The artinian conjecture (following Djament, Putman, Sam, and Snowden), Proceedings of the 47th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Okayama, 2015, pp. 104–111. MR 3363953
- Nicholas J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra. I, Amer. J. Math. 116 (1994), no. 2, 327–360. MR 1269607, DOI 10.2307/2374932
- Nicholas J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra. II, $K$-Theory 8 (1994), no. 4, 395–428. MR 1300547, DOI 10.1007/BF00961409
- Nicholas J. Kuhn, Invariant subspaces of the ring of functions on a vector space over a finite field, J. Algebra 191 (1997), no. 1, 212–227. MR 1444496, DOI 10.1006/jabr.1996.6922
- Nicholas J. Kuhn, The generic representation theory of finite fields: a survey of basic structure, Infinite length modules (Bielefeld, 1998) Trends Math., Birkhäuser, Basel, 2000, pp. 193–212. MR 1789216
- Nicholas J. Kuhn, Generic representation theory of finite fields in nondescribing characteristic, Adv. Math. 272 (2015), 598–610. MR 3303242, DOI 10.1016/j.aim.2014.12.012
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Rohit Nagpal, Steven V Sam, and Andrew Snowden, Noetherianity of some degree two twisted commutative algebras, available at arXiv:1501.06925v2. Selecta Math. (N.S.), to appear.
- C. St. J. A. Nash-Williams, On well-quasi-ordering finite trees, Proc. Cambridge Philos. Soc. 59 (1963), 833–835. MR 153601, DOI 10.1017/s0305004100003844
- Luke Oeding and Claudiu Raicu, Tangential varieties of Segre-Veronese varieties, Collect. Math. 65 (2014), no. 3, 303–330. MR 3240996, DOI 10.1007/s13348-014-0111-1
- Robert Paré, Contravariant functors on finite sets and Stirling numbers, Theory Appl. Categ. 6 (1999), 65–76. The Lambek Festschrift. MR 1732463
- Teimuraz Pirashvili, Dold-Kan type theorem for $\Gamma$-groups, Math. Ann. 318 (2000), no. 2, 277–298. MR 1795563, DOI 10.1007/s002080000120
- Teimuraz Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 151–179 (English, with English and French summaries). MR 1755114, DOI 10.1016/S0012-9593(00)00107-5
- Geoffrey M. L. Powell, The Artinian conjecture for $I^{\otimes 2}$, J. Pure Appl. Algebra 128 (1998), no. 3, 291–310. With an appendix by Lionel Schwartz. MR 1626361, DOI 10.1016/S0022-4049(97)00054-6
- Geoffrey M. L. Powell, The structure of indecomposable injectives in generic representation theory, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4167–4193. MR 1458333, DOI 10.1090/S0002-9947-98-02125-4
- Geoffrey M. L. Powell, On Artinian objects in the category of functors between $\mathbf F_2$-vector spaces, Infinite length modules (Bielefeld, 1998) Trends Math., Birkhäuser, Basel, 2000, pp. 213–228. MR 1789217
- Andrew Putman and Steven V Sam, Representation stability and finite linear groups, available at arXiv:1408.3694v2.
- Claudiu Raicu, Secant varieties of Segre-Veronese varieties, Algebra Number Theory 6 (2012), no. 8, 1817–1868. MR 3033528, DOI 10.2140/ant.2012.6.1817
- Birgit Richter, Taylor towers for $\Gamma$-modules, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 4, 995–1023 (English, with English and French summaries). MR 1849212, DOI 10.5802/aif.1842
- Günther Richter, Noetherian semigroup rings with several objects, Group and semigroup rings (Johannesburg, 1985) North-Holland Math. Stud., vol. 126, North-Holland, Amsterdam, 1986, pp. 231–246. MR 860064
- María Ronco, Shuffle bialgebras, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 799–850 (English, with English and French summaries). MR 2918719, DOI 10.5802/aif.2630
- Steven V. Sam and Andrew Snowden, GL-equivariant modules over polynomial rings in infinitely many variables, Trans. Amer. Math. Soc. 368 (2016), no. 2, 1097–1158. MR 3430359, DOI 10.1090/tran/6355
- Steven V Sam and Andrew Snowden, Introduction to twisted commutative algebras, available at arXiv:1209.5122v1.
- Steven V. Sam and Andrew Snowden, Stability patterns in representation theory, Forum Math. Sigma 3 (2015), Paper No. e11, 108. MR 3376738, DOI 10.1017/fms.2015.10
- Steven V Sam and Andrew Snowden, Representations of categories of $G$-maps, available at arXiv:1410.6054v3.
- Lionel Schwartz, Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994. MR 1282727
- Stefan Schwede, On the homotopy groups of symmetric spectra, Geom. Topol. 12 (2008), no. 3, 1313–1344. MR 2421129, DOI 10.2140/gt.2008.12.1313
- Andrew Snowden, Syzygies of Segre embeddings and $\Delta$-modules, Duke Math. J. 162 (2013), no. 2, 225–277. MR 3018955, DOI 10.1215/00127094-1962767
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Jennifer C. H. Wilson, $\rm FI_\scr W$-modules and stability criteria for representations of classical Weyl groups, J. Algebra 420 (2014), 269–332. MR 3261463, DOI 10.1016/j.jalgebra.2014.08.010
- John D. Wiltshire-Gordon, Uniformly presented vector spaces, available at arXiv:1406.0786v1.
- Christopher F. Woodcock and Habib Sharif, On the transcendence of certain series, J. Algebra 121 (1989), no. 2, 364–369. MR 992771, DOI 10.1016/0021-8693(89)90072-0
Bibliographic Information
- Steven V Sam
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Address at time of publication: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 836995
- ORCID: 0000-0003-1940-9570
- Email: svs@math.wisc.edu
- Andrew Snowden
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 788741
- Email: asnowden@umich.edu
- Received by editor(s): September 21, 2014
- Received by editor(s) in revised form: June 21, 2015, September 4, 2015, and February 4, 2016
- Published electronically: March 17, 2016
- Additional Notes: The first author was supported by a Miller research fellowship.
The second author was supported by NSF grant DMS-1303082. - © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 159-203
- MSC (2010): Primary 05A15, 13P10, 16P40, 18A25, 68Q70
- DOI: https://doi.org/10.1090/jams/859
- MathSciNet review: 3556290