Gromov-Witten/Pairs correspondence for the quintic 3-fold
HTML articles powered by AMS MathViewer
- by R. Pandharipande and A. Pixton;
- J. Amer. Math. Soc. 30 (2017), 389-449
- DOI: https://doi.org/10.1090/jams/858
- Published electronically: March 17, 2016
- PDF | Request permission
Abstract:
We use the Gromov-Witten/Pairs (GW/P) descendent correspondence for toric 3-folds and degeneration arguments to establish the GW/P correspondence for several compact Calabi-Yau (CY) 3-folds (including all CY complete intersections in products of projective spaces). A crucial aspect of the proof is the study of the GW/P correspondence for descendents in relative geometries. Projective bundles over surfaces relative to a section play a special role. The GW/P correspondence for Calabi-Yau complete intersections provides a structure result for the Gromov-Witten invariants in a fixed curve class. After a change of variables, the Gromov-Witten series is a rational function in the variable $-q=e^{iu}$ invariant under $q \leftrightarrow q^{-1}$.References
- Mina Aganagic, Albrecht Klemm, Marcos Mariño, and Cumrun Vafa, The topological vertex, Comm. Math. Phys. 254 (2005), no. 2, 425–478. MR 2117633, DOI 10.1007/s00220-004-1162-z
- K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no. 3, 601–617. MR 1431140, DOI 10.1007/s002220050132
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- Tom Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), no. 4, 969–998. MR 2813335, DOI 10.1090/S0894-0347-2011-00701-7
- J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008), 101–136., DOI 10.1090/S0894-0347-06-00545-5
- R. Gopakumar and C. Vafa, M-theory and topological strings I and II, available at arXiv:hep-th/9809187, arXiv:hep-th/9812127.
- T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487–518. MR 1666787, DOI 10.1007/s002220050293
- Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451–510. MR 3011419, DOI 10.1090/S0894-0347-2012-00757-7
- Eleny-Nicoleta Ionel and Thomas H. Parker, Relative Gromov-Witten invariants, Ann. of Math. (2) 157 (2003), no. 1, 45–96. MR 1954264, DOI 10.4007/annals.2003.157.45
- E. Ionel and T. Parker, The Gopakumar-Vafa formula for symplectic manifolds, available at arXiv:1306.1516., DOI 10.4007/annals.2018.187.1.1
- A. Klemm and M. Mariño, Counting BPS states on the Enriques Calabi-Yau, available at arXiv:hep-th/0512227., DOI 10.1007/s00220-007-0407-z
- An-Min Li and Yongbin Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), no. 1, 151–218. MR 1839289, DOI 10.1007/s002220100146
- Jun Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002), no. 2, 199–293. MR 1938113
- Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI 10.1090/S0894-0347-98-00250-1
- Jun Li and Baosen Wu, Good degeneration of Quot-schemes and coherent systems, Comm. Anal. Geom. 23 (2015), no. 4, 841–921. MR 3385781, DOI 10.4310/CAG.2015.v23.n4.a5
- Davesh Maulik, Gromov-Witten theory of $\scr A_n$-resolutions, Geom. Topol. 13 (2009), no. 3, 1729–1773. MR 2496055, DOI 10.2140/gt.2009.13.1729
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), no. 5, 1286–1304. MR 2264665, DOI 10.1112/S0010437X06002314
- Davesh Maulik and Alexei Oblomkov, Quantum cohomology of the Hilbert scheme of points on $\scr A_n$-resolutions, J. Amer. Math. Soc. 22 (2009), no. 4, 1055–1091. MR 2525779, DOI 10.1090/S0894-0347-09-00632-8
- Davesh Maulik and Alexei Oblomkov, Donaldson-Thomas theory of ${\scr A}_n\times P^1$, Compos. Math. 145 (2009), no. 5, 1249–1276. MR 2551996, DOI 10.1112/S0010437X09003972
- D. Maulik, A. Oblomkov, A. Okounkov, and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math. 186 (2011), no. 2, 435–479. MR 2845622, DOI 10.1007/s00222-011-0322-y
- D. Maulik and R. Pandharipande, A topological view of Gromov-Witten theory, Topology 45 (2006), no. 5, 887–918. MR 2248516, DOI 10.1016/j.top.2006.06.002
- D. Maulik and R. Pandharipande, New calculations in Gromov-Witten theory, Pure Appl. Math. Q. 4 (2008), no. 2, Special Issue: In honor of Fedor Bogomolov., 469–500. MR 2400883, DOI 10.4310/PAMQ.2008.v4.n2.a7
- D. Maulik, R. Pandharipande, and R. P. Thomas, Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010), no. 4, 937–996. With an appendix by A. Pixton. MR 2746343, DOI 10.1112/jtopol/jtq030
- A. Oblomkov, A. Okounkov, and R. Pandharipande. In preparation.
- A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006), no. 2, 517–560. MR 2199225, DOI 10.4007/annals.2006.163.517
- A. Okounkov and R. Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006), no. 1, 47–108. MR 2208418, DOI 10.1007/s00222-005-0455-y
- A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010), no. 3, 523–557. MR 2587340, DOI 10.1007/s00222-009-0223-5
- A. Okounkov and R. Pandharipande, The local Donaldson-Thomas theory of curves, Geom. Topol. 14 (2010), no. 3, 1503–1567. MR 2679579, DOI 10.2140/gt.2010.14.1503
- R. Pandharipande and A. Pixton, Descendents on local curves: rationality, Compos. Math. 149 (2013), no. 1, 81–124. MR 3011879, DOI 10.1112/S0010437X12000498
- Rahul Pandharipande and Aaron Pixton, Descendent theory for stable pairs on toric 3-folds, J. Math. Soc. Japan 65 (2013), no. 4, 1337–1372. MR 3127827, DOI 10.2969/jmsj/06541337
- R. Pandharipande and A. Pixton, Descendents on local curves: stationary theory, Geometry and arithmetic, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 283–307. MR 2987666, DOI 10.4171/119-1/17
- Rahul Pandharipande and Aaron Pixton, Gromov-Witten/pairs descendent correspondence for toric 3-folds, Geom. Topol. 18 (2014), no. 5, 2747–2821. MR 3285224, DOI 10.2140/gt.2014.18.2747
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. MR 2545686, DOI 10.1007/s00222-009-0203-9
- Rahul Pandharipande and Richard P. Thomas, The 3-fold vertex via stable pairs, Geom. Topol. 13 (2009), no. 4, 1835–1876. MR 2497313, DOI 10.2140/gt.2009.13.1835
- R. Pandharipande and R. P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010), no. 1, 267–297. MR 2552254, DOI 10.1090/S0894-0347-09-00646-8
- R. Pandharipande and R. P. Thomas, The Katz-Klemm-Vafa conjecture for $K3$ surfaces, available at arXiv:1407.3181.
- R. Pandharipande and R. P. Thomas, 13/2 ways of counting curves, Moduli spaces, London Math. Soc. Lecture Note Ser., vol. 411, Cambridge Univ. Press, Cambridge, 2014, pp. 282–333. MR 3221298
- Iman Setayesh, Relative Hilbert scheme of points, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–Princeton University. MR 2912104
- Yukinobu Toda, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), no. 4, 1119–1157. MR 2669709, DOI 10.1090/S0894-0347-10-00670-3
Bibliographic Information
- R. Pandharipande
- Affiliation: Departement Mathematik, ETH Zürich, Zürich, Switzerland
- MR Author ID: 357813
- Email: rahul@math.ethz.ch
- A. Pixton
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: apixton@mit.edu
- Received by editor(s): August 25, 2014
- Received by editor(s) in revised form: January 23, 2016, and February 7, 2016
- Published electronically: March 17, 2016
- Additional Notes: The first author was partially supported by NSF Grant DMS-1001154, SNF Grant 200021-143274, SNF Grant 200020-162928, SwissMAP, and ERC Grant AdG-320368-MCSK
The second author was supported by a NDSEG graduate fellowship. - © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 389-449
- MSC (2010): Primary 14N35; Secondary 14H60
- DOI: https://doi.org/10.1090/jams/858
- MathSciNet review: 3600040