Lens rigidity for manifolds with hyperbolic trapped sets
HTML articles powered by AMS MathViewer
- by Colin Guillarmou;
- J. Amer. Math. Soc. 30 (2017), 561-599
- DOI: https://doi.org/10.1090/jams/865
- Published electronically: September 6, 2016
- PDF | Request permission
Abstract:
For a Riemannian manifold $(M,g)$ with strictly convex boundary $\partial M$, the lens data consist of the set of lengths of geodesics $\gamma$ with end points on $\partial M$, together with their end points $(x_-,x_+)\in \partial M\times \partial M$ and tangent exit vectors $(v_-,v_+)\in T_{x_-} M\times T_{x_+} M$. We show deformation lens rigidity for such manifolds with a hyperbolic trapped set and no conjugate points. This class contains all manifolds with negative curvature and strictly convex boundary, including those with non-trivial topology and trapped geodesics. For the same class of manifolds in dimension $2$, we prove that the set of end points and exit vectors of geodesics (i.e., the scattering data) determines the Riemann surface up to conformal diffeomorphism.References
- Yu. E. Anikonov and V. G. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inverse Ill-Posed Probl. 5 (1997), no. 6, 487–490 (1998). MR 1623603, DOI 10.1515/jiip.1997.5.6.487
- M. I. Belishev, The Calderon problem for two-dimensional manifolds by the BC-method, SIAM J. Math. Anal. 35 (2003), no. 1, 172–182. MR 2001471, DOI 10.1137/S0036141002413919
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- Dmitri Burago and Sergei Ivanov, Boundary rigidity and filling volume minimality of metrics close to a flat one, Ann. of Math. (2) 171 (2010), no. 2, 1183–1211. MR 2630062, DOI 10.4007/annals.2010.171.1183
- Oliver Butterley and Carlangelo Liverani, Smooth Anosov flows: correlation spectra and stability, J. Mod. Dyn. 1 (2007), no. 2, 301–322. MR 2285731, DOI 10.3934/jmd.2007.1.301
- Christopher B. Croke, Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv. 65 (1990), no. 1, 150–169. MR 1036134, DOI 10.1007/BF02566599
- Christopher B. Croke, Rigidity and the distance between boundary points, J. Differential Geom. 33 (1991), no. 2, 445–464. MR 1094465
- Christopher Croke, Scattering rigidity with trapped geodesics, Ergodic Theory Dynam. Systems 34 (2014), no. 3, 826–836. MR 3199795, DOI 10.1017/etds.2012.164
- Christopher B. Croke and Pilar Herreros, Lens rigidity with trapped geodesics in two dimensions, Asian J. Math. 20 (2016), no. 1, 47–57. MR 3460758, DOI 10.4310/AJM.2016.v20.n1.a3
- Christopher B. Croke and Bruce Kleiner, Conjugacy and rigidity for manifolds with a parallel vector field, J. Differential Geom. 39 (1994), no. 3, 659–680. MR 1274134
- Nurlan Dairbekov and Gunther Uhlmann, Reconstructing the metric and magnetic field from the scattering relation, Inverse Probl. Imaging 4 (2010), no. 3, 397–409. MR 2671103, DOI 10.3934/ipi.2010.4.397
- David Dos Santos Ferreira, Carlos E. Kenig, Mikko Salo, and Gunther Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math. 178 (2009), no. 1, 119–171. MR 2534094, DOI 10.1007/s00222-009-0196-4
- David Dos Santos Ferreira, Yaroslav Kurylev, Matti Lassas, and Mikko Salo, The Calderon problem in transversally anisotropic geometries, to appear in J. Eur. Math. Soc.
- Semyon Dyatlov and Colin Guillarmou, Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 2, 371–448 (English, with English and French summaries). MR 3215926, DOI 10.24033/asens.2217
- Semyon Dyatlov, Colin Guillarmou, Pollicott-Ruelle resonances for open systems. Ann. Henri Poincaré, 1–18, DOI 10.1007/s00023-016-0491-8.
- Semyon Dyatlov, Maciej Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. l’ENS 49 (2016), 543–577.
- Frédéric Faure and Johannes Sjöstrand, Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys. 308 (2011), no. 2, 325–364 (English, with English and French summaries). MR 2851145, DOI 10.1007/s00220-011-1349-z
- Friedrich G. Friedlander and Mark S. Joshi, Introduction to the Theory of Distributions, Cambridge Univ. Press. (1999), pp. 188.
- Patrick Gérard and François Golse, Averaging regularity results for PDEs under transversality assumptions, Comm. Pure Appl. Math. 45 (1992), no. 1, 1–26. MR 1135922, DOI 10.1002/cpa.3160450102
- Alain Grigis and Johannes Sjöstrand, Microlocal analysis for differential operators, London Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press, Cambridge, 1994. An introduction. MR 1269107, DOI 10.1017/CBO9780511721441
- Colin Guillarmou, Invariant distributions and X-ray transform for Anosov flows, J. Differential Geom., to appear. arXiv:1408.4732.
- V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved $2$-manifolds, Topology 19 (1980), no. 3, 301–312. MR 579579, DOI 10.1016/0040-9383(80)90015-4
- Victor Guillemin and David Kazhdan, Some inverse spectral results for negatively curved $n$-manifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980, pp. 153–180. MR 573432
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- M. Hirsch, J. Palis, C. Pugh, and M. Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1969/70), 121–134. MR 262627, DOI 10.1007/BF01404552
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Tosio Kato, Marius Mitrea, Gustavo Ponce, and Michael Taylor, Extension and representation of divergence-free vector fields on bounded domains, Math. Res. Lett. 7 (2000), no. 5-6, 643–650. MR 1809290, DOI 10.4310/MRL.2000.v7.n5.a10
- Wilhelm Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2) 99 (1974), 1–13. MR 377980, DOI 10.2307/1971011
- Wilhelm P. A. Klingenberg, Riemannian geometry, 2nd ed., De Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1995. MR 1330918, DOI 10.1515/9783110905120
- Matti Lassas, Vladimir Sharafutdinov, and Gunther Uhlmann, Semiglobal boundary rigidity for Riemannian metrics, Math. Ann. 325 (2003), no. 4, 767–793. MR 1974568, DOI 10.1007/s00208-002-0407-4
- René Michel, Sur la rigidité imposée par la longueur des géodésiques, Invent. Math. 65 (1981/82), no. 1, 71–83 (French). MR 636880, DOI 10.1007/BF01389295
- R. G. Muhometov and V. G. Romanov, On the problem of finding an isotropic Riemannian metric in an $n$-dimensional space, Dokl. Akad. Nauk SSSR 243 (1978), no. 1, 41–44 (Russian). MR 511273
- R. G. Muhometov, On a problem of reconstructing Riemannian metrics, Sibirsk. Mat. Zh. 22 (1981), no. 3, 119–135, 237 (Russian). MR 621466
- Lyle Noakes and Luchezar Stoyanov, Rigidity of scattering lengths and travelling times for disjoint unions of strictly convex bodies, Proc. Amer. Math. Soc. 143 (2015), no. 9, 3879–3893. MR 3359579, DOI 10.1090/S0002-9939-2015-12531-2
- Gabriel P. Paternain, Geodesic flows, Progress in Mathematics, vol. 180, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1712465, DOI 10.1007/978-1-4612-1600-1
- Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann, Tensor tomography on surfaces, Invent. Math. 193 (2013), no. 1, 229–247. MR 3069117, DOI 10.1007/s00222-012-0432-1
- Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann, Invariant distributions, Beurling transforms and tensor tomography in higher dimensions, Math. Ann. 363 (2015), no. 1-2, 305–362. MR 3394381, DOI 10.1007/s00208-015-1169-0
- Leonid Pestov and Gunther Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. (2) 161 (2005), no. 2, 1093–1110. MR 2153407, DOI 10.4007/annals.2005.161.1093
- L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Sibirsk. Mat. Zh. 29 (1988), no. 3, 114–130, 221 (Russian); English transl., Siberian Math. J. 29 (1988), no. 3, 427–441 (1989). MR 953028, DOI 10.1007/BF00969652
- Clark Robinson, Structural stability on manifolds with boundary, J. Differential Equations 37 (1980), no. 1, 1–11. MR 583334, DOI 10.1016/0022-0396(80)90083-2
- Mikko Salo and Gunther Uhlmann, The attenuated ray transform on simple surfaces, J. Differential Geom. 88 (2011), no. 1, 161–187. MR 2819758
- V. A. Sharafutdinov, Integral geometry of tensor fields, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1994. MR 1374572, DOI 10.1515/9783110900095
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Plamen Stefanov and Gunther Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc. 18 (2005), no. 4, 975–1003. MR 2163868, DOI 10.1090/S0894-0347-05-00494-7
- Plamen Stefanov and Gunther Uhlmann, Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds, J. Differential Geom. 82 (2009), no. 2, 383–409. MR 2520797
- Plamen Stefanov, Gunther Uhlmann, and Andras Vasy, Boundary rigidity with partial data, J. Amer. Math. Soc. 29 (2016), no. 2, 299–332. MR 3454376, DOI 10.1090/jams/846
- Jean-Pierre Otal, Sur les longueurs des géodésiques d’une métrique à courbure négative dans le disque, Comment. Math. Helv. 65 (1990), no. 2, 334–347 (French). MR 1057248, DOI 10.1007/BF02566611
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 433364
- Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277. MR 766265, DOI 10.1007/BF02392379
- Michael E. Taylor, Partial differential equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag, New York, 1996. Basic theory. MR 1395148, DOI 10.1007/978-1-4684-9320-7
- Michael E. Taylor, Partial differential equations. III, Applied Mathematical Sciences, vol. 117, Springer-Verlag, New York, 1997. Nonlinear equations; Corrected reprint of the 1996 original. MR 1477408
- Gunther Uhlmann and András Vasy, The inverse problem for the local geodesic ray transform, Invent. Math. 205 (2016), no. 1, 83–120. MR 3514959, DOI 10.1007/s00222-015-0631-7
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
- Lai-Sang Young, Large deviations in dynamical systems, Trans. Amer. Math. Soc. 318 (1990), no. 2, 525–543. MR 975689, DOI 10.1090/S0002-9947-1990-0975689-7
- Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138, American Mathematical Society, Providence, RI, 2012. MR 2952218, DOI 10.1090/gsm/138
Bibliographic Information
- Colin Guillarmou
- Affiliation: DMA, U.M.R. 8553 CNRS, École Normale Superieure, 45 rue d’Ulm, 75230 Paris cedex 05, France
- MR Author ID: 754486
- Email: cguillar@dma.ens.fr
- Received by editor(s): January 16, 2015
- Received by editor(s) in revised form: July 12, 2016
- Published electronically: September 6, 2016
- Additional Notes: The research is partially supported by grants ANR-13-BS01-0007-01 and ANR-13-JS01-0006.
- © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 561-599
- MSC (2010): Primary 35R30; Secondary 53C24, 53C65
- DOI: https://doi.org/10.1090/jams/865
- MathSciNet review: 3600043