Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin $L$-functions
HTML articles powered by AMS MathViewer
- by Henri Darmon and Victor Rotger;
- J. Amer. Math. Soc. 30 (2017), 601-672
- DOI: https://doi.org/10.1090/jams/861
- Published electronically: June 10, 2016
- PDF | Request permission
Abstract:
This article establishes new cases of the Birch and Swinnerton-Dyer conjecture in analytic rank $0$, for elliptic curves over $\mathbb {Q}$ viewed over the fields cut out by certain self-dual Artin representations of dimension at most $4$. When the associated $L$-function vanishes (to even order $\ge 2$) at its central point, two canonical classes in the corresponding Selmer group are constructed and shown to be linearly independent assuming the non-vanishing of a Garrett-Hida $p$-adic $L$-function at a point lying outside its range of classical interpolation. The key tool for both results is the study of certain $p$-adic families of global Galois cohomology classes arising from Gross-Kudla-Schoen diagonal cycles in a tower of triple products of modular curves.References
- A. O. L. Atkin and Wen Ch’ing Winnie Li, Twists of newforms and pseudo-eigenvalues of $W$-operators, Invent. Math. 48 (1978), no. 3, 221–243. MR 508986, DOI 10.1007/BF01390245
- Joël Bellaïche and Mladen Dimitrov, On the eigencurve at classical weight 1 points, Duke Math. J. 165 (2016), no. 2, 245–266. MR 3457673, DOI 10.1215/00127094-3165755
- M. Bertolini, F. Castella, H. Darmon, S. Dasgupta, K. Prasanna, and V. Rotger, $p$-adic $L$-functions and Euler systems: a tale in two trilogies, in Automorphic forms and Galois representations, vol. 1, LMS Lecture Notes 414, CUP (2014) 52–102.
- Massimo Bertolini and Henri Darmon, A rigid analytic Gross-Zagier formula and arithmetic applications, Ann. of Math. (2) 146 (1997), no. 1, 111–147. With an appendix by Bas Edixhoven. MR 1469318, DOI 10.2307/2951833
- M. Bertolini and H. Darmon, Euler systems and Jochnowitz congruences, Amer. J. Math. 121 (1999), no. 2, 259–281. MR 1680333
- M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic $\Bbb Z_p$-extensions, Ann. of Math. (2) 162 (2005), no. 1, 1–64. MR 2178960, DOI 10.4007/annals.2005.162.1
- Massimo Bertolini, Henri Darmon, and Samit Dasgupta, Stark-Heegner points and special values of $L$-series, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 1–23. MR 2392351, DOI 10.1017/CBO9780511721267.002
- Massimo Bertolini, Henri Darmon, and Victor Rotger, Beilinson-Flach elements and Euler systems I: Syntomic regulators and $p$-adic Rankin $L$-series, J. Algebraic Geom. 24 (2015), no. 2, 355–378. MR 3311587, DOI 10.1090/S1056-3911-2014-00670-6
- Massimo Bertolini, Henri Darmon, and Victor Rotger, Beilinson-Flach elements and Euler systems II: the Birch-Swinnerton-Dyer conjecture for Hasse-Weil-Artin $L$-series, J. Algebraic Geom. 24 (2015), no. 3, 569–604. MR 3344765, DOI 10.1090/S1056-3911-2015-00675-0
- Amnon Besser, A generalization of Coleman’s $p$-adic integration theory, Invent. Math. 142 (2000), no. 2, 397–434. MR 1794067, DOI 10.1007/s002220000093
- Spencer Bloch and Kazuya Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR 1086888
- A. Besser, D. Loefffler, and S. Zerbes, Finite polynomial cohomology for general varieties, submitted.
- Christophe Breuil and Matthew Emerton, Représentations $p$-adiques ordinaires de $\textrm {GL}_2(\mathbf Q_p)$ et compatibilité local-global, Astérisque 331 (2010), 255–315 (French, with English and French summaries). MR 2667890
- Robert F. Coleman, Classical and overconvergent modular forms of higher level, J. Théor. Nombres Bordeaux 9 (1997), no. 2, 395–403 (English, with English and French summaries). MR 1617406
- Robert Coleman and Adrian Iovita, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J. 97 (1999), no. 1, 171–215. MR 1682268, DOI 10.1215/S0012-7094-99-09708-9
- Robert Coleman and Adrian Iovita, Hidden structures on semistable curves, Astérisque 331 (2010), 179–254 (English, with English and French summaries). MR 2667889
- Henri Darmon, Integration on $\scr H_p\times \scr H$ and arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3, 589–639. MR 1884617, DOI 10.2307/3062142
- Henri Darmon, Fred Diamond, and Richard Taylor, Fermat’s last theorem, Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993) Int. Press, Cambridge, MA, 1997, pp. 2–140. MR 1605752
- Henri Darmon, Alan Lauder, and Victor Rotger, Stark points and $p$-adic iterated integrals attached to modular forms of weight one, Forum Math. Pi 3 (2015), e8, 95. MR 3456180, DOI 10.1017/fmp.2015.7
- Henri Darmon and Victor Rotger, Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 779–832 (English, with English and French summaries). MR 3250064, DOI 10.24033/asens.2227
- H. Darmon and V. Rotger, Elliptic curves of rank two and generalised Kato classes, submitted.
- Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- Matthew Emerton, A new proof of a theorem of Hida, Internat. Math. Res. Notices 9 (1999), 453–472. MR 1692599, DOI 10.1155/S1073792899000239
- Gerd Faltings, Crystalline cohomology and $p$-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25–80. MR 1463696
- Gerd Faltings, Crystalline cohomology of semistable curve—the $\textbf {Q}_p$-theory, J. Algebraic Geom. 6 (1997), no. 1, 1–18. MR 1486990
- Matthias Flach, A generalisation of the Cassels-Tate pairing, J. Reine Angew. Math. 412 (1990), 113–127. MR 1079004, DOI 10.1515/crll.1990.412.113
- Ralph Greenberg, Iwasawa theory for $p$-adic representations, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 97–137. MR 1097613, DOI 10.2969/aspm/01710097
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Haruzo Hida, A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math. 79 (1985), no. 1, 159–195. MR 774534, DOI 10.1007/BF01388661
- Haruzo Hida, Galois representations into $\textrm {GL}_2(\textbf {Z}_p[[X]])$ attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545–613. MR 848685, DOI 10.1007/BF01390329
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135, DOI 10.1017/CBO9780511623691
- Uwe Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), no. 2, 207–245. MR 929536, DOI 10.1007/BF01456052
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104361
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- V. A. Kolyvagin, Finiteness of $E(\textbf {Q})$ and SH$(E,\textbf {Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 523–541. MR 954295, DOI 10.1070/IM1989v032n03ABEH000779
- Y. Liu, Gross-Kudla-Schoen cycles and twisted triple product Selmer groups. Preprint.
- Y. Liu, Bounding cubic-triple product Selmer groups of elliptic curves. Preprint.
- Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms, Ann. of Math. (2) 180 (2014), no. 2, 653–771. MR 3224721, DOI 10.4007/annals.2014.180.2.6
- David Loeffler and Sarah Livia Zerbes, Iwasawa theory and $p$-adic $L$-functions over $\Bbb {Z}_p^2$-extensions, Int. J. Number Theory 10 (2014), no. 8, 2045–2095. MR 3273476, DOI 10.1142/S1793042114500699
- Matteo Longo, Victor Rotger, and Stefano Vigni, Special values of $L$-functions and the arithmetic of Darmon points, J. Reine Angew. Math. 684 (2013), 199–244. MR 3181561, DOI 10.1515/crelle-2011-0005
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- Dzh. Miln, Ètal′nye kogomologii, “Mir”, Moscow, 1983 (Russian). Translated from the English by O. N. Vvedenskiĭ, Yu. G. Zarkhin and V. V. Shokurov; Translation edited and with a preface by I. R. Shafarevich. MR 733256
- J. Nekovář, Syntomic cohomology and $p$-adic regulators, preprint, 1998.
- Jan Nekovář, $p$-adic Abel-Jacobi maps and $p$-adic heights, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) CRM Proc. Lecture Notes, vol. 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367–379. MR 1738867, DOI 10.1090/crmp/024/18
- Jan Nekovář, Level raising and anticyclotomic Selmer groups for Hilbert modular forms of weight two, Canad. J. Math. 64 (2012), no. 3, 588–668. MR 2962318, DOI 10.4153/CJM-2011-077-6
- J. Nekovář, W. Niziol, Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, preprint.
- Masami Ohta, On the $p$-adic Eichler-Shimura isomorphism for $\Lambda$-adic cusp forms, J. Reine Angew. Math. 463 (1995), 49–98. MR 1332907, DOI 10.1515/crll.1995.463.49
- Dipendra Prasad, Trilinear forms for representations of $\textrm {GL}(2)$ and local $\epsilon$-factors, Compositio Math. 75 (1990), no. 1, 1–46. MR 1059954
- Takeshi Saito, Modular forms and $p$-adic Hodge theory, Invent. Math. 129 (1997), no. 3, 607–620. MR 1465337, DOI 10.1007/s002220050175
- Christopher Skinner and Eric Urban, Vanishing of $L$-functions and ranks of Selmer groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 473–500. MR 2275606
- P. Wake, The $\Lambda$-adic Eichler-Shimura isomorphism and $p$-adic étale cohomology, submitted.
- A. Wiles, On ordinary $\lambda$-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529–573. MR 969243, DOI 10.1007/BF01394275
Bibliographic Information
- Henri Darmon
- Affiliation: Department of Mathematics, McGill University, Montréal H3A-0B9, Canada
- MR Author ID: 271251
- Email: darmon@math.mcgill.ca
- Victor Rotger
- Affiliation: Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
- MR Author ID: 698263
- Email: victor.rotger@upc.edu
- Received by editor(s): September 21, 2014
- Received by editor(s) in revised form: October 16, 2015, and April 27, 2016
- Published electronically: June 10, 2016
- Additional Notes: The first author was supported by an NSERC Discovery grant.
The second author was supported by Grants MTM2012-34611 and MTM2015-63829-P - © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 601-672
- MSC (2010): Primary 11G05; Secondary 11G40
- DOI: https://doi.org/10.1090/jams/861
- MathSciNet review: 3630084