Schubert calculus and torsion explosion
HTML articles powered by AMS MathViewer
- by Geordie Williamson; with a joint appendix with Alex Kontorovich and Peter J. McNamara
- J. Amer. Math. Soc. 30 (2017), 1023-1046
- DOI: https://doi.org/10.1090/jams/868
- Published electronically: October 20, 2016
- PDF | Request permission
Abstract:
The author observes that certain numbers occurring in Schubert calculus for $\text {SL}_n$ also occur as entries in intersection forms controlling decompositions of Soergel bimodules in higher rank. These numbers grow exponentially. This observation gives many counter-examples to the expected bounds in Lusztig’s conjecture on the characters of simple rational modules for $\text {SL}_n$ over fields of positive characteristic. The examples also give counter-examples to the James conjecture on decomposition numbers for symmetric groups.References
- Sergey Arkhipov, Roman Bezrukavnikov, and Victor Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), no. 3, 595–678. MR 2053952, DOI 10.1090/S0894-0347-04-00454-0
- H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque 220 (1994), 321 (English, with English and French summaries). MR 1272539
- A. Beilinson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), no. 3, 547–557, 782 (English, with English and Russian summaries). MR 2119139, DOI 10.17323/1609-4514-2004-4-3-547-557
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Sieving and expanders, C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 155–159 (English, with English and French summaries). MR 2246331, DOI 10.1016/j.crma.2006.05.023
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Affine linear sieve, expanders, and sum-product, Invent. Math. 179 (2010), no. 3, 559–644. MR 2587341, DOI 10.1007/s00222-009-0225-3
- Jean Bourgain and Alex Kontorovich, On Zaremba’s conjecture, Ann. of Math. (2) 180 (2014), no. 1, 137–196. MR 3194813, DOI 10.4007/annals.2014.180.1.3
- Roman Bezrukavnikov and Ivan Mirković, Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution, Ann. of Math. (2) 178 (2013), no. 3, 835–919. With an appendix by Eric Sommers. MR 3092472, DOI 10.4007/annals.2013.178.3.2
- Roman Bezrukavnikov, Ivan Mirković, and Dmitriy Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167 (2008), no. 3, 945–991. With an appendix by Bezrukavnikov and Simon Riche. MR 2415389, DOI 10.4007/annals.2008.167.945
- R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$, Ann. of Math. (2) 15 (1913/14), no. 1-4, 49–70. MR 1502459, DOI 10.2307/1967798
- Mark Andrea A. de Cataldo and Luca Migliorini, The hard Lefschetz theorem and the topology of semismall maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 759–772 (English, with English and French summaries). MR 1951443, DOI 10.1016/S0012-9593(02)01108-4
- Mark Andrea A. de Cataldo and Luca Migliorini, The Hodge theory of algebraic maps, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 693–750 (English, with English and French summaries). MR 2195257, DOI 10.1016/j.ansens.2005.07.001
- Stephen Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39–60. MR 1200163, DOI 10.1007/BF02571640
- S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series, vol. 253, Cambridge University Press, Cambridge, 1998. MR 1707336, DOI 10.1017/CBO9780511600708
- Ben Elias and Mikhail Khovanov, Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. , posted on (2010), Art. ID 978635, 58. MR 3095655, DOI 10.1155/2010/978635
- Ben Elias, The two-color Soergel calculus, Compos. Math. 152 (2016), no. 2, 327–398. MR 3462556, DOI 10.1112/S0010437X15007587
- B. Elias and G. Williamson. Soergel calculus. Represent. Theory, to appear. arXiv:1309.0865.
- Ben Elias and Geordie Williamson, The Hodge theory of Soergel bimodules, Ann. of Math. (2) 180 (2014), no. 3, 1089–1136. MR 3245013, DOI 10.4007/annals.2014.180.3.6
- Peter Fiebig, The combinatorics of Coxeter categories, Trans. Amer. Math. Soc. 360 (2008), no. 8, 4211–4233. MR 2395170, DOI 10.1090/S0002-9947-08-04376-6
- Peter Fiebig, The multiplicity one case of Lusztig’s conjecture, Duke Math. J. 153 (2010), no. 3, 551–571. MR 2667425, DOI 10.1215/00127094-2010-031
- Peter Fiebig, Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture, J. Amer. Math. Soc. 24 (2011), no. 1, 133–181. MR 2726602, DOI 10.1090/S0894-0347-2010-00679-0
- Peter Fiebig, An upper bound on the exceptional characteristics for Lusztig’s character formula, J. Reine Angew. Math. 673 (2012), 1–31. MR 2999126, DOI 10.1515/CRELLE.2011.170
- Dmitrii A. Frolenkov and Igor D. Kan, A strengthening of a theorem of Bourgain-Kontorovich II, Mosc. J. Comb. Number Theory 4 (2014), no. 1, 78–117. MR 3284129
- Peter Fiebig and Geordie Williamson, Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 2, 489–536 (English, with English and French summaries). MR 3330913, DOI 10.5802/aif.2856
- James A. Green, Polynomial representations of $\textrm {GL}_{n}$, Algebra, Carbondale 1980 (Proc. Conf., Southern Illinois Univ., Carbondale, Ill., 1980) Lecture Notes in Math., vol. 848, Springer, Berlin, 1981, pp. 124–140. MR 613180
- Douglas Hensley, A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets, J. Number Theory 58 (1996), no. 1, 9–45. MR 1387719, DOI 10.1006/jnth.1996.0058
- ShinnYih Huang, An improvement to Zaremba’s conjecture, Geom. Funct. Anal. 25 (2015), no. 3, 860–914. MR 3361774, DOI 10.1007/s00039-015-0327-6
- X. He and G. Williamson. Soergel calculus and Schubert calculus. Bull. Inst. Math. Acad. Sin. (N.S.), to appear. arXiv:1502.04914.
- Gordon James, The decomposition matrices of $\textrm {GL}_n(q)$ for $n\le 10$, Proc. London Math. Soc. (3) 60 (1990), no. 2, 225–265. MR 1031453, DOI 10.1112/plms/s3-60.2.225
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943, DOI 10.1007/BFb0069521
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Jens Carsten Jantzen, Character formulae from Hermann Weyl to the present, Groups and analysis, London Math. Soc. Lecture Note Ser., vol. 354, Cambridge Univ. Press, Cambridge, 2008, pp. 232–270. MR 2528469, DOI 10.1017/CBO9780511721410.012
- Daniel Juteau, Carl Mautner, and Geordie Williamson, Parity sheaves, J. Amer. Math. Soc. 27 (2014), no. 4, 1169–1212. MR 3230821, DOI 10.1090/S0894-0347-2014-00804-3
- L. T. Jensen and G. Williamson. The $p$-canonical basis for Hecke algebras. To appear in Perspectives in categorification. arXiv:1304.1448.
- Shin-ichi Kato, On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 55 (1985), no. 2, 103–130. MR 772611, DOI 10.1016/0001-8708(85)90017-9
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), no. 2, 335–381. MR 1239506, DOI 10.1090/S0894-0347-1994-1239506-X
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc. 7 (1994), no. 2, 383–453. MR 1239507, DOI 10.1090/S0894-0347-1994-1239507-1
- Alex Kontorovich, From Apollonius to Zaremba: local-global phenomena in thin orbits, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 2, 187–228. MR 3020826, DOI 10.1090/S0273-0979-2013-01402-2
- Alex Kontorovich, Levels of distribution and the affine sieve, Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), no. 5, 933–966 (English, with English and French summaries). MR 3294598, DOI 10.5802/afst.1432
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), no. 1, 21–62. MR 1317626, DOI 10.1215/S0012-7094-95-07702-3
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case, Duke Math. J. 84 (1996), no. 3, 771–813. MR 1408544, DOI 10.1215/S0012-7094-96-08424-0
- Nicolas Libedinsky, Presentation of right-angled Soergel categories by generators and relations, J. Pure Appl. Algebra 214 (2010), no. 12, 2265–2278. MR 2660912, DOI 10.1016/j.jpaa.2010.02.026
- Nicolas Libedinsky, Light leaves and Lusztig’s conjecture, Adv. Math. 280 (2015), 772–807. MR 3350234, DOI 10.1016/j.aim.2015.04.022
- George Lusztig, Some problems in the representation theory of finite Chevalley groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, RI, 1980, pp. 313–317. MR 604598
- George Lusztig, Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London Ser. A 445 (1994), no. 1923, 231–246. MR 1276910, DOI 10.1098/rspa.1994.0058
- Alireza Salehi Golsefidy and Peter Sarnak, The affine sieve, J. Amer. Math. Soc. 26 (2013), no. 4, 1085–1105. MR 3073885, DOI 10.1090/S0894-0347-2013-00764-X
- Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
- Wolfgang Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math. 429 (1992), 49–74. MR 1173115, DOI 10.1515/crll.1992.429.49
- Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83–114. MR 1444322, DOI 10.1090/S1088-4165-97-00021-6
- Wolfgang Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, J. Pure Appl. Algebra 152 (2000), no. 1-3, 311–335. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). MR 1784005, DOI 10.1016/S0022-4049(99)00138-3
- Wolfgang Soergel, Langlands’ philosophy and Koszul duality, Algebra—representation theory (Constanta, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 28, Kluwer Acad. Publ., Dordrecht, 2001, pp. 379–414. MR 1858045, DOI 10.1007/978-94-010-0814-3_{1}7
- Wolfgang Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007), no. 3, 501–525 (German, with English and German summaries). MR 2329762, DOI 10.1017/S1474748007000023
- Geordie Williamson and Tom Braden, Modular intersection cohomology complexes on flag varieties, Math. Z. 272 (2012), no. 3-4, 697–727. MR 2995137, DOI 10.1007/s00209-011-0955-y
- G. Williamson. On torsion in the intersection cohomology of Schubert varieties. J. Algebra, to appear. arXiv:1512.08295.
- G. Williamson. Some applications of parity sheaves. Oberwolfach reports, 2012.
Bibliographic Information
- Geordie Williamson
- Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany
- MR Author ID: 845262
- Email: geordie@mpim-bonn.mpg.de
- Alex Kontorovich
- Affiliation: Rutgers University, New Brunswick, New Jersey
- MR Author ID: 704943
- ORCID: 0000-0001-7626-8319
- Email: alex.kontorovich@rutgers.edu
- Peter J. McNamara
- Affiliation: University of Queensland, Brisbane, Queensland, Australia
- MR Author ID: 791816
- Email: p.mcnamara@uq.edu.au
- Received by editor(s): June 22, 2015
- Received by editor(s) in revised form: May 5, 2016, and August 4, 2016
- Published electronically: October 20, 2016
- Additional Notes: The first author of the Appendix is partially supported by an NSF CAREER grant DMS-1455705 and an Alfred P. Sloan Research Fellowship.
- © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 1023-1046
- MSC (2010): Primary 20C20, 20G05; Secondary 14N15, 14M15
- DOI: https://doi.org/10.1090/jams/868
- MathSciNet review: 3671935
Dedicated: Dedicated to Meg and Gong.