JOURNAL OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 30, Number 4, October 2017, Pages 1047-1053
http://dx.doi.org/10.1090/jams/869

Article electronically published on September 30, 2016

ON THE ERDOS-SZEKERES CONVEX POLYGON PROBLEM

ANDREW SUK

1. INTRODUCTION

In their classic 1935 paper, Erdés and Szekeres [7] proved that, for every integer
n > 3, there is a minimal integer E.S(n), such that any set of £\S(n) points in the
plane in general positio contains n points in convex position; that is, they are
the vertices of a convex n-gon.

Erdés and Szekeres gave two proofs of the existence of ES(n). Their first proof
used a quantitative version of Ramsey’s theorem, which gave a very poor upper
bound for ES(n). The second proof was more geometric and showed that ES(n) <
(27?:24) + 1 (see Theorem in the next section). On the other hand, they showed
that £S(n) > 2"~2 + 1 and conjectured this to be sharp [S].

Small improvements have been made on the upper bound (2"_4

g
n72) + I = %
by various researchers [3] 1317, [18,22,[23], but no improvement in the order of
magnitude has ever been made. The most recent upper bound, due to Norin and
Yuditsky [I8] and Mojarrad and Vlachos [I7], says that
ES 7
lim sup TSL) < —.
n—reo ( n—2 ) 16
In the present paper, we prove the following.

Theorem 1.1. For all n > ng, where ng is a large absolute constant, ES(n) <
2n+6n2/3 log n

The study of ES(n) and its variantd] has generated a lot of research over the
past several decades. For a more thorough history on the subject, we refer the
interested reader to [2[I5l22]. All logarithms are to base 2.

2. NOTATION AND TOOLS

In this section, we recall several results that will be used in the proof of Theorem
[LI We start with the following simple lemma.

Lemma 2.1 (see Theorem 1.2.3 in [I4]). Let X be a finite point set in the plane in
general position such that every four members in X are in convex position. Then
X s in convex position.
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INo three of the points are on a line.

2Higher dimensions [TT}[IZ}21], for families of convex bodies in the plane [5l[@], etc.
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FIGURE 1. A 4-cup and a 5-cap.

The next theorem is a well-known result from [7], which is often referred to as
the Erdés-Szekeres cups-caps theorem. Let X be a k-element point set in the plane
in general position. We say that X forms a k-cup (k-cap) if X is in convex position
and its convex hull is bounded above (below) by a single edge. In other words, X
is a cup (cap) if and only if for every point p € X, there is a line L passing through
it such that all of the other points in X lie on or above (below) L. See Figure [l

Theorem 2.2 ([7]). Let f(k,£) be the smallest integer N such that any N-element
planar point set in the plane in general position contains a k-cup or an £-cap. Then

Pk, ) = (k;:ff) 41

The next theorem is a combinatorial reformulation of Theorem observed
by Hubard et al. [I0] (see also [9,[16]). A transitive 2-coloring of the triples of
{1,2,...,N} is a 2-coloring, say with colors red and blue, such that, for i; <
io < i3 < i4, if triples (iy,42,43) and (i2,i3,44) are red (blue), then (i1,142,i4) and
(41,143,14) are also red (blue).

Theorem 2.3 ([7]). Let g(k,¢) denote the minimum integer N such that, for every
transitive 2-coloring on the triples of {1,2,..., N}, there exists a red clique of size
k or a blue clique of size £. Then

gk, 0) = f(k,0) = (’“”_4) +1.
k—2

The next theorem is due to Pér and Valtr [20] and is often referred to as the
positive-fraction Erdés-Szekeres theorem (see also [IL[I9]). Given a k-cap (k-cup)
X = {x1,...,xx}, where the points appear in order from left to right, we define
the support of X to be the collection of open regions C = {T1,...,Tx}, where T;
is the region outside of conv(X) bounded by the segment Z;Z;11 and by the lines
Xio1T4y Tip1Ti+2 (Where Tyy1 = 1, Tp12 = T2, etc.). See Figure

Theorem 2.4 (Proof of Theorem 4 in [20]). Let k > 3, and let P be a finite
point set in the plane in general position such that |P| > 232K, Then there is a
k-element subset X C P such that X is either a k-cup or a k-cap, and the regions
Ty,...,Tx—1 from the support of X satisfy |T; N P| > 2‘3%. In particular, every
(k — 1)-tuple obtained by selecting one point from each T; NP, i=1,...,k —1, is
n convexr position.

Note that Theorem [Z4] does not say anything about the points inside region T.
Let us also remark that in the proof of Theorem 2.4 in [20], the authors find a
2k-element set X C P, such that k of the regions in the support of X each contain
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P . . .
at least 2|32L points from P, and therefore these regions may not be consecutive.
However, by appropriately selecting a k-element subset X’ C X, we obtain Theorem

24

3. PrROOF OF THEOREM [LL1]

Let P be an N-element planar point set in the plane in general position, where
N = L2"+6"2/3 o™ | and n > ng, where ng is a sufficiently large absolute constant.
Set k = [n?/3]. We apply Theorem 24 to P with parameter k + 3 and obtain a
subset X = {z1,...,2+3} C P such that X is a cup or a cap, and the points in
X appear in order from left to right. Moreover since k = [n?/3] is large, regions
T1,...,Tkyo in the support of X satisfy

N
|T; N P| > A0k
Set P, = T, NP fori=1,....,k+ 2. We will assume that X is a cap, since
a symmetric argument would apply. We say that the two regions 7; and T} are
adjacent if ¢ and j are consecutive indices.

Consider the subset P; C P and the region T;, for some fixed ¢ € {2,...,k+ 1}.
Let B; be the segment T; _17;13. See Figure Bl The point set P; naturally comes
with a partial order <, where p < ¢q if p # ¢ and ¢ € conv(B; Up). Set a =
3n~/31logn. By Dilworth’s theorem [4], P; contains either a chain of size at least
|P;|1=% or an antichain of size at least |P;|* with respect to <. The proof now falls
into two cases.

FIGURE 2. Regions T, ..., Tg in the support of X = {z1,..., 26},
and segment Bs.
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Case 1. Suppose there are t = [%/3] parts P; in the collection F = {P, Ps, ...,
P41}, such that no two of them are in adjacent regions, and each such part contains
a subset Q; of size at least |P;|® such that @; is an antichain with respect to <.
Let Qj,,Qj,,--.,Q;, be the selected subsets.

For each Q;,, r € {1,...,t}, the line spanned by any two points in @), does not
intersect the segment B, and, therefore, does not intersect region T, for w # r (by
the non-adjacency property). Since n is sufficiently large, we have 40k < n?/3logn,
and therefore

o N \“ n2/3 106 41513 log? n n+ 2m2/3] — 4
|Qj,.| > | Pl Z(W) > 930/ log nt-15n'/% log Z< [n_; 1

= f(n, [20*77).

Theorem 22 implies that @, contains either an n-cup or a [2n%/3]-cap. If we are in
the former case for any r € {1,...,t}, then we are done. Therefore we can assume
Qj, contains a subset S; that is a [2n2%/3]-cap, for all 7 € {1,...,t}.

We claim that S = S;, U---UJSj, is a cap, and therefore S is in convex position.
Let p € S;,. Since |S;.| > 2, there is a point ¢ € S;,. such that the line L supported
by the segment pg has the property that all of the other points in §j;, lie below
L. Since L does not intersect Bj,, all of the points in S\ {p, ¢} must lie below L.
Hence, S is a cap and

1/3
I = 185, U U S;| > o= (2n2%) = n.

Case 2. Suppose we are not in Case 1. Then there are [n'/3] consecutive indices
J,J+1,7+2,..., such that each such part P;, contains a subset ();4, such that
Qj+r is a chain of length at least |Pj4,|'~® with respect to <. For simplicity, we
can relabel these sets Q1,Q2, @3, .. ..

Consider the subset @; inside the region 7T;, and order the elements in @Q; =
{p1,p2,ps3, ...} with respect to <. We say that Y C Q; is a right-cap if z; UY is in
convex position, and we say that Y is a left-cap if x;41 UY is in convex position.
Notice that left-caps and right-caps correspond to the standard notion of cups and
caps after applying an appropriate rotation to the plane so that the segment T;z; 11
is vertical. Since @); is a chain with respect to <, every triple in @Q; is either a left-
cap or a right-cap, but not both. Moreover, for i1 < is < i3 < ig, if (Piy, PinsDis)
and (pi,, Pig, Di,) are right-caps (left-caps), then (pi,, piy, p:i,) and (pi,, Pis, Pi,) are
both right-caps (left-caps). By Theorem 23| if |Q;| > f(k,£), then @; contains
either a k-left-cap or an ¢-right-cap. We make the following observation.

Observation 3.1. Consider the (adjacent) sets Q;—1 and Q;. If Q;—1 contains a
k-left-cap Y;—1, and Q; contains an £-right-cap Y;, then Y;_1UY; forms k+{ points
in convex position.

Proof. By Lemma[2.1] it suffices to show every four points in Y;_; UY; are in convex
position. If all four points lie in Y;, then they are in convex position. Likewise if they
all lie in Y;_1, they are in convex position. Suppose we take two points p1,ps € Y;_1
and two points ps,ps € Y;. Since Q;_1 and @Q; are both chains with respect to <,
the line spanned by p1, p2 does not intersect the region T;, and the line spanned by
p3, P4 does not intersect the region 7;_,. Hence p1, p2, p3, p4 are in convex position.
Now suppose we have p1,po,p3 € Y;_1 and py € Y;. Since the three lines Ly, Lo, L3
spanned by p1, po, ps all intersect the segment B;_1, both x; and p4 lie in the same
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F1GURE 3. A 3-left-cap in Q;_1 and a 4-right-cap in @Q;, which
forms 7 points in convex position.

region in the arrangement of Ly U Ly U L3. Therefore pq, ps, p3, ps are in convex
position. The same argument follows in the case that p; € Y;_1 and ps, p3,p4 € Y.
See Figure 3 a

We have for i € {1,..., [n1/3]},
N e 2/3 1/3 2
(1) |Qz| > |Pi|(170¢) > (W) > on+2n logn—15n""" log n

Set K = [n?/3]. Since n is sufficiently large, we have

Q)] > (”;ff;‘l) 1= f(K,n),

which implies that ) contains either an n-right-cap or a K-left-cap. In the former
case we are done, so we can assume that )y contains a K-left-cap. Likewise,
|Q2| > (”;KI(_?l) +1= f(2K,n — K), which implies )2 contains either an (n — K)-
right-cap or a (2K)-left-cap. In the former case we are done since Observation [3.1]
implies that the K-left-cap in @1 and the (n — K)-right-cap in Q2 form n points in
convex position. Therefore we can assume )2 contains a (2K)-left-cap.

In general, if we know that @;_1 contains an (¢ — K)-left-cap, then we can

conclude that Q; contains an (iK)-left-cap. Indeed, for all i < [n!/3] we have

n+K-—4 2/3
2 < 2n+ (n —|—4.
@) ( iK —2 > =
Since n is sufficiently large, () and @) imply that

|Qz‘ > 2n+2n2/3 logn—15n'/3log? n > 7’L—|—K—4

1K —2
Therefore, Q; contains either an (n —iK + K)-right-cap or an (iK)-left-cap. In the
former case we are done by Observation 3] (recall that we assumed ();—; contains
an (1K — K)-left-cap), and therefore we can assume Q; contains an (iK)-left-cap.

>+1:f(iK,n—iK—|—K).
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Hence for i = [n'/3], we can conclude that Qn1/37 contains an n-left-cap. This
completes the proof of Theorem [[.11 a

4. CONCLUDING REMARKS

Following the initial publication of this work on arXiv, we have learned that

Géabor Tardos has improved the lower order term in the exponent, showing that
ES(’H) _ 2n+O(\/nlog n)
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