Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension
HTML articles powered by AMS MathViewer
- by Sándor J Kovács and Zsolt Patakfalvi;
- J. Amer. Math. Soc. 30 (2017), 959-1021
- DOI: https://doi.org/10.1090/jams/871
- Published electronically: December 15, 2016
- PDF | Request permission
Abstract:
We prove that any coarse moduli space of stable log-varieties of general type is projective. We also prove subadditivity of log-Kodaira dimension for fiber spaces whose general fiber is of log general type.References
- Dan Abramovich, A high fibered power of a family of varieties of general type dominates a variety of general type, Invent. Math. 128 (1997), no. 3, 481–494. MR 1452430, DOI 10.1007/s002220050149
- Dan Abramovich and Brendan Hassett, Stable varieties with a twist, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 1–38. MR 2779465, DOI 10.4171/007-1/1
- Valery Alexeev, Boundedness and $K^2$ for log surfaces, Internat. J. Math. 5 (1994), no. 6, 779–810. MR 1298994, DOI 10.1142/S0129167X94000395
- Valery Alexeev, Moduli spaces $M_{g,n}(W)$ for surfaces, Higher-dimensional complex varieties (Trento, 1994) de Gruyter, Berlin, 1996, pp. 1–22. MR 1463171, DOI 10.1006/jcat.1996.0357
- Kenneth Ascher and Amos Turchet, A fibered power theorem for pairs of log general type, Algebra Number Theory 10 (2016), no. 7, 1581–1600. MR 3554241, DOI 10.2140/ant.2016.10.1581
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Caucher Birkar, The Iitaka conjecture $C_{n,m}$ in dimension six, Compos. Math. 145 (2009), no. 6, 1442–1446. MR 2575089, DOI 10.1112/S0010437X09004187
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- Paolo Bravi, Jacopo Gandini, Andrea Maffei, and Alessandro Ruzzi, Normality and non-normality of group compactifications in simple projective spaces, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 6, 2435–2461 (2012) (English, with English and French summaries). MR 2976317, DOI 10.5802/aif.2679
- J. Cao and M. Păun: Kodaira dimension of algebraic fiber spaces over abelian varieties, Invent. Math. (2016), doi:10.1007/s00222-016-0672-6.
- Jungkai Alfred Chen and Christopher D. Hacon, Kodaira dimension of irregular varieties, Invent. Math. 186 (2011), no. 3, 481–500. MR 2854084, DOI 10.1007/s00222-011-0323-x
- Y. Chen and L. Zhang: The subadditivity of the Kodaira dimension for fibrations of relative dimension one in positive characteristics, arXiv:1305.6024 (2013).
- Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902, DOI 10.1007/b75857
- B. Conrad: The Keel-Mori theorem via stacks, http://math.stanford.edu/~conrad/papers/coarsespace.pdf (2005).
- Corrado De Concini, Normality and non normality of certain semigroups and orbit closures, Algebraic transformation groups and algebraic varieties, Encyclopaedia Math. Sci., vol. 132, Springer, Berlin, 2004, pp. 15–35. MR 2090668, DOI 10.1007/978-3-662-05652-3_{3}
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
- Hélène Esnault and Eckart Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compositio Math. 76 (1990), no. 1-2, 69–85. Algebraic geometry (Berlin, 1988). MR 1078858
- Hubert Flenner, Die Sätze von Bertini für lokale Ringe, Math. Ann. 229 (1977), no. 2, 97–111 (German). MR 460317, DOI 10.1007/BF01351596
- Osamu Fujino, Algebraic fiber spaces whose general fibers are of maximal Albanese dimension, Nagoya Math. J. 172 (2003), 111–127. MR 2019522, DOI 10.1017/S0027763000008667
- O. Fujino: Semi-positivity theorems for moduli problems, arXiv:1210.5784 (2012).
- Osamu Fujino, On maximal Albanese dimensional varieties, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), no. 8, 92–95. MR 3127923, DOI 10.3792/pjaa.89.92
- O. Fujino: Notes on the weak positivity theorems, arXiv:1406.1834 (2014).
- O. Fujino: On subadditivity of the logarithmic Kodaira dimension, arXiv:1406.2759 (2014).
- O. Fujino: Subadditivity of the logarithmic Kodaira dimension for morphisms of relative dimension one revisited, https://www.math.kyoto-u.ac.jp/~fujino/revisited2015-2.pdf (2015).
- D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977), no. 3, 233–282. MR 498596, DOI 10.1007/BF01390081
- A. Grothendieck: Éléments de géométrie algébrique IV., Inst. Hautes Études Sci. Publ. Math. (1964–1967), no. 20, 24, 28, 32.
- C. D. Hacon, J. McKernan, and C. Xu: Boundedness of moduli of varieties of general type, arXiv:1412.1186 (2014).
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. MR 597077, DOI 10.1007/BF01467074
- Brendan Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), no. 2, 316–352. MR 1957831, DOI 10.1016/S0001-8708(02)00058-0
- Brendan Hassett and Donghoon Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471–4489. MR 2500894, DOI 10.1090/S0002-9947-09-04819-3
- Brendan Hassett and Donghoon Hyeon, Log minimal model program for the moduli space of stable curves: the first flip, Ann. of Math. (2) 177 (2013), no. 3, 911–968. MR 3034291, DOI 10.4007/annals.2013.177.3.3
- Brendan Hassett and Sándor J. Kovács, Reflexive pull-backs and base extension, J. Algebraic Geom. 13 (2004), no. 2, 233–247. MR 2047697, DOI 10.1090/S1056-3911-03-00331-X
- Shigeru Iitaka, Algebraic geometry, North-Holland Mathematical Library, vol. 24, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties; Graduate Texts in Mathematics, 76. MR 637060, DOI 10.1007/978-1-4613-8119-8
- Masayuki Kawakita, Inversion of adjunction on log canonicity, Invent. Math. 167 (2007), no. 1, 129–133. MR 2264806, DOI 10.1007/s00222-006-0008-z
- Yujiro Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), no. 2, 253–276. MR 622451
- Yujiro Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math. 363 (1985), 1–46. MR 814013, DOI 10.1515/crll.1985.363.1
- Seán Keel, Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2) 149 (1999), no. 1, 253–286. MR 1680559, DOI 10.2307/121025
- Seán Keel and Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1, 193–213. MR 1432041, DOI 10.2307/2951828
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. III. The line bundles on $M_{g,n}$, and a proof of the projectivity of $\overline M_{g,n}$ in characteristic $0$, Math. Scand. 52 (1983), no. 2, 200–212. MR 702954, DOI 10.7146/math.scand.a-12002
- J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338. MR 922803, DOI 10.1007/BF01389370
- János Kollár, Subadditivity of the Kodaira dimension: fibers of general type, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 361–398. MR 946244, DOI 10.2969/aspm/01010361
- János Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235–268. MR 1064874
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- J. Kollár: Hulls and husks, arXiv:0805.0576 (2008).
- János Kollár, Moduli of varieties of general type, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 131–157. MR 3184176
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- J. Kollár: Moduli of higher dimensional varieties: book in preparation, manuscript (2014).
- János Kollár and Sándor J. Kovács, Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23 (2010), no. 3, 791–813. MR 2629988, DOI 10.1090/S0894-0347-10-00663-6
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Ching-Jui Lai, Varieties fibered by good minimal models, Math. Ann. 350 (2011), no. 3, 533–547. MR 2805635, DOI 10.1007/s00208-010-0574-7
- G. Laumon and L. Moret-Bailly: Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000.
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- Zsolt Patakfalvi, Semi-positivity in positive characteristics, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 5, 991–1025 (English, with English and French summaries). MR 3294622, DOI 10.24033/asens.2232
- Zsolt Patakfalvi, Fibered stable varieties, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1837–1869. MR 3449226, DOI 10.1090/tran/6386
- Zs. Patakfalvi: On subadditivity of Kodaira dimension in positive characteristic over a general type base, to appear in the Journal of Algebraic Geometry (2016).
- Zsolt Patakfalvi and Karl Schwede, Depth of $F$-singularities and base change of relative canonical sheaves, J. Inst. Math. Jussieu 13 (2014), no. 1, 43–63. MR 3134015, DOI 10.1017/S1474748013000066
- Zs. Patakfalvi and C. Xu: Ampleness of the CM line bundle on the moduli space of canonically polarized varieties, to appear in Algebraic Geometry (2015).
- N. I. Shepherd-Barron, Degenerations with numerically effective canonical divisor, The birational geometry of degenerations (Cambridge, Mass., 1981) Progr. Math., vol. 29, Birkhäuser Boston, Boston, MA, 1983, pp. 33–84. MR 690263
- Stacks Project Authors: Stacks project, http://stacks.math.columbia.edu.
- D. A. Timashëv, Equivariant compactifications of reductive groups, Mat. Sb. 194 (2003), no. 4, 119–146 (Russian, with Russian summary); English transl., Sb. Math. 194 (2003), no. 3-4, 589–616. MR 1992080, DOI 10.1070/SM2003v194n04ABEH000731
- Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Vol. 439, Springer-Verlag, Berlin-New York, 1975. Notes written in collaboration with P. Cherenack. MR 506253, DOI 10.1007/BFb0070570
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329–353. MR 715656, DOI 10.2969/aspm/00110329
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension. II. The local Torelli map, Classification of algebraic and analytic manifolds (Katata, 1982) Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 567–589. MR 728619
- Eckart Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995. MR 1368632, DOI 10.1007/978-3-642-79745-3
- Eckart Viehweg and Kang Zuo, Base spaces of non-isotrivial families of smooth minimal models, Complex geometry (Göttingen, 2000) Springer, Berlin, 2002, pp. 279–328. MR 1922109
- Xiaowei Wang and Chenyang Xu, Nonexistence of asymptotic GIT compactification, Duke Math. J. 163 (2014), no. 12, 2217–2241. MR 3263033, DOI 10.1215/00127094-2785806
Bibliographic Information
- Sándor J Kovács
- Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195-4350
- MR Author ID: 289685
- Email: skovacs@uw.edu
- Zsolt Patakfalvi
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000, USA
- Address at time of publication: EPFL, SB MATHGEOM CAG MA, B3 444 (Bâtiment MA), Station 8, CH-1015, Lausanne, Switzerland
- Email: zsolt.patakfalvi@epfl.ch
- Received by editor(s): July 10, 2015
- Received by editor(s) in revised form: February 10, 2016, and July 20, 2016
- Published electronically: December 15, 2016
- Additional Notes: The first author was supported in part by NSF Grants DMS-1301888 and DMS-1565352, a Simons Fellowship (#304043), and the Craig McKibben and Sarah Merner Endowed Professorship in Mathematics at the University of Washington. This work started while enjoying the hospitality of the Institute for Advanced Study (Princeton) supported by The Wolfensohn Fund.
The second author was supported in part by NSF Grant DMS-1502236. - © Copyright 2016 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 959-1021
- MSC (2010): Primary 14J10
- DOI: https://doi.org/10.1090/jams/871
- MathSciNet review: 3671934