Convexity of the $K$-energy on the space of Kähler metrics and uniqueness of extremal metrics
HTML articles powered by AMS MathViewer
- by Robert J. Berman and Bo Berndtsson;
- J. Amer. Math. Soc. 30 (2017), 1165-1196
- DOI: https://doi.org/10.1090/jams/880
- Published electronically: March 2, 2017
- PDF | Request permission
Abstract:
We establish the convexity of Mabuchi’s $K$-energy functional along weak geodesics in the space of Kähler potentials on a compact Kähler manifold, thus confirming a conjecture of Chen, and give some applications in Kähler geometry, including a proof of the uniqueness of constant scalar curvature metrics (or more generally extremal metrics) modulo automorphisms. The key ingredient is a new local positivity property of weak solutions to the homogeneous Monge-Ampère equation on a product domain, whose proof uses plurisubharmonic variation of Bergman kernels.References
- Shigetoshi Bando and Toshiki Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 11–40. MR 946233, DOI 10.2969/aspm/01010011
- Eric Bedford and Dan Burns, Holomorphic mapping of annuli in $\textbf {C}^{n}$ and the associated extremal function, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), no. 3, 381–414. MR 553791
- Eric Bedford and John Erik Fornæss, Counterexamples to regularity for the complex Monge-Ampère equation, Invent. Math. 50 (1978/79), no. 2, 129–134. MR 517774, DOI 10.1007/BF01390286
- Robert Berman, Super Toeplitz operators on line bundles, J. Geom. Anal. 16 (2006), no. 1, 1–22. MR 2211329, DOI 10.1007/BF02930984
- R. J. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. 131 (2009), no. 5, 77–115.
- R. J. Berman, S. Boucksom, V. Guedj, and A. Zeriahi, A variational approach to complex Monge-Ampère equations, Publ. Math. de l’IHÈS 211 (2012), 1–67.
- Robert Berman and Jean-Pierre Demailly, Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology, Progr. Math., vol. 296, Birkhäuser/Springer, New York, 2012, pp. 39–66. MR 2884031, DOI 10.1007/978-0-8176-8277-4_{3}
- Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639. MR 2505296, DOI 10.1090/S0894-0347-09-00629-8
- R. J. Berman and D. Witt Nystrom, Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons, arXiv:1401.8264.
- R. J. Berman and C. H. Lu, Convexity of the $K$-energy, entropy and the finite energy Calabi flow. In preparation.
- Bo Berndtsson, Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1633–1662 (English, with English and French summaries). MR 2282671, DOI 10.5802/aif.2223
- Bo Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math. 200 (2015), no. 1, 149–200. MR 3323577, DOI 10.1007/s00222-014-0532-1
- Thierry Bouche, Convergence de la métrique de Fubini-Study d’un fibré linéaire positif, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 1, 117–130 (French, with English summary). MR 1056777, DOI 10.5802/aif.1206
- Z. Blocki, On geodesics in the space of Kähler metrics, Proceedings of the “Conference in Geometry” dedicated to Shing-Tung Yau (Warsaw, April 2009), in “Advances in Geometric Analysis,” ed. S. Janeczko, J. Li, and D. Phong, Advanced Lectures in Mathematics 21, pp. 3–20, International Press, 2012.
- E. Calabi, The space of Kähler metrics, Proceedings of the International Congress of Mathematics 1954, Vol. 2 page 206 (1954), Amsterdam.
- E. Calabi, Extremal Kähler metrics, in Seminar on Differential Geometry, volume 102 of Ann. of Math. Stud., pages 259–290, Princeton Univ. Press, Princeton, N.J., 1982.
- E. Calabi and X. X. Chen, The space of Kähler metrics. II, J. Differential Geom. 61 (2002), no. 2, 173–193. MR 1969662, DOI 10.4310/jdg/1090351383
- Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234. MR 1863016
- Xiuxiong Chen, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices 12 (2000), 607–623. MR 1772078, DOI 10.1155/S1073792800000337
- Xiuxiong Chen, Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), no. 3, 453–503. MR 2471594, DOI 10.1007/s00222-008-0153-7
- X. X. Chen, L. Li, and M. Păun, Approximation of weak geodesics and subharmonicity of Mabuchi energy, arXiv:1409.7896.
- X. X. Chen and G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1–107. MR 2434691, DOI 10.1007/s10240-008-0013-4
- Chi Li, Constant scalar curvature Kähler metric obtains the minimum of K-energy, Int. Math. Res. Not. IMRN 9 (2011), 2161–2175. MR 2806561, DOI 10.1093/imrn/rnq152
- T. Darvas, Envelopes and Geodesics in Spaces of Kähler Potentials, arXiv:1401.7318.
- Tamás Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182–219. MR 3406499, DOI 10.1016/j.aim.2015.08.005
- Tamás Darvas and László Lempert, Weak geodesics in the space of Kähler metrics, Math. Res. Lett. 19 (2012), no. 5, 1127–1135. MR 3039835, DOI 10.4310/MRL.2012.v19.n5.a13
- S. K. Donaldson, Remarks on gauge theory, complex geometry and $4$-manifold topology, Fields Medallists’ lectures, World Sci. Ser. 20th Century Math., vol. 5, World Sci. Publ., River Edge, NJ, 1997, pp. 384–403. MR 1622931, DOI 10.1142/9789812385215_{0}042
- S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33. MR 1736211, DOI 10.1090/trans2/196/02
- S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479–522. MR 1916953, DOI 10.4310/jdg/1090349449
- S. K. Donaldson, Scalar curvature and projective embeddings. II, Q. J. Math. 56 (2005), no. 3, 345–356. MR 2161248, DOI 10.1093/qmath/hah044
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506, DOI 10.4310/jdg/1090950195
- Daniel Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles, Math. Res. Lett. 6 (1999), no. 5-6, 547–555. MR 1739213, DOI 10.4310/MRL.1999.v6.n5.a7
- Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442–482. MR 2352488, DOI 10.1016/j.jfa.2007.04.018
- V. Guedj, The metric completion of the Riemannian space of Kähler metrics, arXiv:1401.7857.
- Joel Fine, Constant scalar curvature Kähler metrics on fibred complex surfaces, J. Differential Geom. 68 (2004), no. 3, 397–432. MR 2144537
- A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437–443. MR 718940, DOI 10.1007/BF01388438
- Akito Futaki and Toshiki Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), no. 2, 199–210. MR 1314584, DOI 10.1007/BF01446626
- Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR 29911, DOI 10.2307/1969548
- Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, Jones and Bartlett Publishers, Boston, MA, 1993. MR 1202429
- László Lempert and Liz Vivas, Geodesics in the space of Kähler metrics, Duke Math. J. 162 (2013), no. 7, 1369–1381. MR 3079251, DOI 10.1215/00127094-2142865
- Toshiki Mabuchi, $K$-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575–593. MR 867064, DOI 10.2748/tmj/1178228410
- Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227–252. MR 909015
- Toshiki Mabuchi, Uniqueness of extremal Kähler metrics for an integral Kähler class, Internat. J. Math. 15 (2004), no. 6, 531–546. MR 2078878, DOI 10.1142/S0129167X04002429
- Fumio Maitani and Hiroshi Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Ann. 330 (2004), no. 3, 477–489. MR 2099190, DOI 10.1007/s00208-004-0556-8
- D. H. Phong and Jacob Sturm, Scalar curvature, moment maps, and the Deligne pairing, Amer. J. Math. 126 (2004), no. 3, 693–712. MR 2058389, DOI 10.1353/ajm.2004.0019
- Julius Ross and David Witt Nyström, Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 315–335. MR 3415070, DOI 10.1007/s10240-015-0074-0
- Yuji Sano and Carl Tipler, Extremal metrics and lower bound of the modified K-energy, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 9, 2289–2310. MR 3420508, DOI 10.4171/JEMS/557
- Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495–550. MR 1165352, DOI 10.2307/2374768
- R. Seyyedali, Relative Chow stability and extremal metrics, arXiv:1610.07555.
- Santiago R. Simanca, A $K$-energy characterization of extremal Kähler metrics, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1531–1535. MR 1664359, DOI 10.1090/S0002-9939-99-05364-2
- Yum Tong Siu, Calculus inequalities derived from holomorphic Morse inequalities, Math. Ann. 286 (1990), no. 1-3, 549–558. MR 1032946, DOI 10.1007/BF01453588
- Jian Song and Gang Tian, Canonical measures and Kähler-Ricci flow, J. Amer. Math. Soc. 25 (2012), no. 2, 303–353. MR 2869020, DOI 10.1090/S0894-0347-2011-00717-0
- Jacopo Stoppa, Twisted constant scalar curvature Kähler metrics and Kähler slope stability, J. Differential Geom. 83 (2009), no. 3, 663–691. MR 2581360
- J. Streets, Long time existence of Minimizing Movement solutions of Calabi flow, Adv. Math. 259 (2014), pp. 688–729.
- Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
- Gang Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld. MR 1787650, DOI 10.1007/978-3-0348-8389-4
- Gang Tian and Xiaohua Zhu, Uniqueness of Kähler-Ricci solitons, Acta Math. 184 (2000), no. 2, 271–305. MR 1768112, DOI 10.1007/BF02392630
- Gang Tian and Xiaohua Zhu, A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment. Math. Helv. 77 (2002), no. 2, 297–325. MR 1915043, DOI 10.1007/s00014-002-8341-3
- Shing-Tung Yau, Nonlinear analysis in geometry, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 33, L’Enseignement Mathématique, Geneva, 1986. Série des Conférences de l’Union Mathématique Internationale [Lecture Series of the International Mathematics Union], 8. MR 865650
Bibliographic Information
- Robert J. Berman
- Affiliation: Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96 Gothenburg, Sweden
- MR Author ID: 743613
- Email: robertb@chalmers.se
- Bo Berndtsson
- Affiliation: Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96 Gothenburg, Sweden
- MR Author ID: 35620
- Email: bob@chalmers.se
- Received by editor(s): December 2, 2014
- Received by editor(s) in revised form: November 16, 2016
- Published electronically: March 2, 2017
- Additional Notes: The first author was supported by grants from the ERC (Euoropean Research Council) and the KAW (Knut and Alice Wallenberg foundation).
The second author was supported by a grant from VR (Vetenskapsrådet) - © Copyright 2017 American Mathematical Society
- Journal: J. Amer. Math. Soc. 30 (2017), 1165-1196
- MSC (2010): Primary 32Q15, 53C55
- DOI: https://doi.org/10.1090/jams/880
- MathSciNet review: 3671939