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LONG GAPS BETWEEN PRIMES
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1. Introduction

Let pn denote the nth prime, and let

G(X) := max
pn�X

(pn+1 − pn).

It is clear from the prime number theorem that

G(X) � (1 + o(1)) logX,

as the average gap between the prime numbers which are � X is ∼ logX. In
1931, Westzynthius [46] proved that infinitely often, the gap between consecutive
prime numbers can be an arbitrarily large multiple of the average gap, that is,
G(X)/ logX → ∞ as X → ∞, improving upon prior results of Backlund [2] and
Brauer-Zeitz [5]. Moreover, he proved the quantitative bound1

G(X) � logX log3 X

log4 X
.

In 1935 Erdős [11] sharpened this to

G(X) � logX log2 X

(log3 X)2
,

and in 1938 Rankin [40] made a subsequent improvement

G(X) � (c+ o(1))
logX log2 X log4 X

(log3 X)2

with c = 1
3 . The constant c was increased several times: to 1

2e
γ by Schönhage [43],

then to c = eγ by Rankin [41], to c = 1.31256eγ by Maier and Pomerance [32], and,
most recently, to c = 2eγ by Pintz [36].

Recently, in two independent papers [13,35], the authors lshowed that c could be
taken to be arbitrarily large, answering in the affirmative a long-standing conjec-
ture of Erdős [12]. The methods of proof in [13] and [35]both introduced estimates
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on primes in very short arithmetic progressions, but these differed in some key as-
pects. The arguments in [13] used recent results [21–23] on the number of solutions
to linear equations in primes, whereas the arguments in [35] instead relied on mul-
tidimensional prime-detecting sieves introduced in [33]. Our main theorem is the
following quantitative improvement.

Theorem 1 (Large prime gaps). For any sufficiently large X, one has

G(X) � logX log2 X log4 X

log3 X
.

The implied constant is effective.

Our overall approach combines ideas from the two previous papers [13,35]. There
are two key ingredients which allow us to obtain the quantitative improvement.
First, we incorporate a uniform version of the multidimensional sieve approach
as worked out in [34], which gives a quantitative improvement to the underlying
estimates about primes. Second, we prove a generalization of a hypergraph covering
theorem of Pippenger and Spencer [37], which allows for an essentially optimal
means of translating such estimates into a result on large gaps between primes. It
is this covering theorem which is the key new ingredient in our work and may be
of independent interest.

All approaches which obtain quantitative improvements beyond the average
bound G(X) � logX have used a sieving argument which is conjectured to be
unable to produce a result stronger than G(X) � logX(log2 X)2+o(1). Moreover,
in light of the essentially optimal bounds in our covering theorem for this problem
and the current limitations of the multidimensional sieve estimates, Theorem 1 ap-
pears to be the strongest result one can hope to prove without improvements toward
the Hardy-Littlewood prime k-tuples conjecture, or a radically new approach.

In a sequel [15] to this paper, a subset of the authors will extend the above
theorem to also cover chains of consecutive large gaps between primes, by combining
the methods in this paper with the Maier matrix method. In view of this, we have
written some of the key propositions in this paper in slightly more generality than is
strictly necessary to prove Theorem 1, as the more general versions of these results
will be useful in the sequel [15].

The results and methods of this paper have also subsequently been applied by
Maier and Rassias [31] (extending the method of the first author, Heath-Brown, and
the third author [14]) to obtain large prime gaps (of the order of that in Theorem 1)
that contain a perfect kth power of a prime for a fixed k, and by Baker and Freiberg
[3] to obtain lower bounds on the density of limit points of prime gaps normalized
by any function that grows slightly more slowly than the one in Theorem 1. We
refer the interested reader to these papers for further details.

1.1. Historical background. Based on a probabilistic model of primes, Cramér
[8] conjectured that

lim sup
X→∞

G(X)

log2 X
= 1.

Granville [20] offered a refinement of Cramér’s model and has conjectured that
the lim sup above is in fact at least 2e−γ = 1.1229 . . .. These conjectures are well
beyond the reach of our methods. Cramér’s model also predicts that the normalized
prime gaps pn+1−pn

log pn
should have exponential distribution, that is, pn+1 − pn �
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C log pn for about e−Cπ(X) primes � X, for any fixed C > 0. Numerical evidence
from prime calculations up to 4 · 1018 [44] matches this prediction quite closely,
with the exception of values of C close to logX, for which there are very little
data available. In fact, maxX�4·1018 G(X)/ log2 X ≈ 0.9206, slightly below the
predictions of Cramér and Granville.

Unconditional upper bounds for G(X) are far from the conjectured truth, the
best being G(X) � X0.525 and due to Baker, Harman, and Pintz [4]. Even the
Riemann hypothesis2 furnishes only the bound G(X) � X1/2 logX [7].

All works on lower bounds for G(X) have followed a similar overall plan of
attack: they show that there are at least G(X) consecutive integers in (X/2, X],
each of which has a “very small” prime factor. To describe the results, we make
the following definition.

Definition 1. Let x be a positive integer. Define Y (x) to be the largest integer y
for which one may select residue classes ap mod p, one for each prime p � x, which
together “sieve out” (cover) the whole interval [y] = {1, . . . , y}. Equivalently, Y (x)
is the largest integer m so that there are m consecutive integers, each with a factor
in common with P (x).

The relation between this function Y and gaps between primes is encoded in the
following simple lemma.

Lemma 1.1. Write P (x) for the product of the primes less than or equal to x.
Then

G(P (x) + x) � Y (x).

Proof. Set y = Y (x), and select residue classes ap mod p, one for each prime p � x,
which cover [y]. By the Chinese remainder theorem there is some m, x < m �
x + P (x), with m ≡ −ap (mod p) for all primes p � x. We claim that all of the
numbers m+1, . . . ,m+ y are composite, which means that there is a gap of length
y amongst the primes less than m+ y, thereby concluding the proof of the lemma.
To prove the claim, suppose that 1 � t � y. Then there is some p such that t ≡ ap
(mod p), and hence m + t ≡ −ap + ap ≡ 0 (mod p); thus p divides m + t. Since
m+ t > m > x � p, m+ t is indeed composite. �

By the prime number theorem we have P (x) = e(1+o(1))x. Thus the bound of
Lemma 1.1 implies that

G(X) � Y
(
(1 + o(1)) logX

)
as X → ∞. In particular, Theorem 1 is a consequence of the bound

(1.1) Y (x) � x log x log3 x

log2 x
,

which we will establish later in this paper. This improves on the bound Y (x) �
x log x log3 x

log2
2 x

obtained by Rankin [40].

The function Y is intimately related to Jacobsthal’s function j. If n is a positive
integer, then j(n) is defined to be the maximal gap between integers coprime to
n. In particular j(P (x)) is the maximal gap between numbers free of prime factors
� x, or equivalently 1 plus the longest string of consecutive integers, each divisible

2Some slight improvements are available if one also assumes some form of the pair correlation
conjecture; see [26].
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by some prime p � x. The Chinese remainder theorem construction given in the
proof of Lemma 1.1 in fact proves that

(1.2) Y (x) = j(P (x))− 1.

This observation, together with results in the literature, gives upper bounds for Y .
The best upper bound known is Y (x) � x2, which comes from Iwaniec’s work [28]
on Jacobsthal’s function. It is conjectured by Maier and Pomerance that in fact
Y (x) � x(log x)2+o(1). This places a serious (albeit conjectural) upper bound on
how large gaps between primes we can hope to find via lower bounds for Y (x): a
bound in the region ofG(X) � logX(log logX)2+o(1), far from Cramér’s conjecture,
appears to be the absolute limit of such an approach.

The lower bound on certain values of Jacobsthal’s function provided by (1.1),
(1.2) can be inserted directly into [39, Theorem 1] to obtain a lower bound for the
maximum over l of p(k, l), the least prime in the arithmetic progression l mod k,
in the case when the modulus k has no small prime factors. We have the following
corollary.

Corollary 1. For any natural number k, let M(k) denote the maximum value of
p(k, l) over all l coprime to k. Suppose that k has no prime factors less than or
equal to x for some x � log k. Then, if x is sufficiently large (in order to make
log2 x, log3 x positive), one has the lower bound

M(k) � k
x log x log3 x

log2 x
.

Proof. Apply [36, Theorem 1] with m = P (x) if x � 1
2 log k and with m =

P ( 12 log k) if
1
2 log k < x � log k. �

In view of [39, Theorem 3], one may also expect to be able to prove a lower
bound of the form

(1.3) M(k) � φ(k)
log k log2 k log4 k

log3 k

for a set of natural numbers k of density 1, but we were unable to find a quick way
to establish this from the results in this paper.3

1.2. Method of proof. Our methods here are a combination of those in our previ-
ous papers [13,35], which are in turn based in part on arguments in earlier papers,
particularly those of Rankin [40] and Maier-Pomerance [32]. In order to make the
lower bound in Theorem 1 as efficient as possible, we combine these ideas with a
generalization of some arguments of Pippenger and Spencer [37].

As noted above, to prove Theorem 1, it suffices to sieve out an interval [y] by

residue classes ap mod p for each prime p � x, where y 	 x log x log3 x
log2 x . Actually,

it is permissible to have O( x
log x ) survivors in [y] that are not sieved out by these

residue classes, since one can easily eliminate such survivors by increasing x by a
constant multiplicative factor. Also, for minor technical reasons, it is convenient to
sieve out [y]\[x] rather than [y].

Following [13], we will sieve out [y]\[x] by the residue classes 0 mod p for both
very small primes p (p � log20 x) and medium primes p (between z := xlog3 x/(4 log2 x)

3Inequality (1.3) has recently been established by Li, Pratt, and Shakan [30] for every positive
integer k except those with more than exp{(1/2 − ε) log2 k log4 k/ log3 k} prime factors, ε > 0

fixed.
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and x/2). The survivors of this process are essentially the set Q of primes between
x and y. After this initial sieving, the next stage will be to randomly sieve out
residue classes ã = (as mod s)s∈S for small primes s (between log20 x and z). (This
approach differs slightly from the approach taken in [35] and earlier papers, in
which a fixed residue class is used for all small (and very small) primes instead.)
This cuts down the set of primes Q to a smaller set Q∩ S(ã), whose cardinality is
typically on the order of x

log x log2 x. The remaining task is then to select integers

np for each prime p between x/2 and x, such that the residue classes np mod p cut
down Q∩ S(ã) to a set of survivors of size O( x

log x ).

Assuming optimistically that one can ensure that the different residue classes
np mod p largely remove disjoint sets from Q ∩ S(ã), we are led to the need to
select the integers np so that each np mod p contains about log2 x of the primes in
Q∩S(ã). In [13], the approach taken was to use recent results on linear equations in
primes [21–23] to locate arithmetic progressions q, q+r!p, . . . , q+(r−1)r!p consisting
entirely of primes for some suitable r, and then to take np = q. Unfortunately, due
to various sources of ineffectivity in the known results on linear equations in primes,
this method only works when r is fixed or growing extremely slowly in x, whereas
here we would need to take r of the order of log2 x. To get around this difficulty,
we use instead the methods from [35], which are based on the multidimensional
sieve methods introduced in [33] to obtain bounded intervals with many primes. A
routine modification of these methods gives tuples q+h1p, . . . , q+hkp which contain
� log k primes, for suitable large k; in fact, by using the calculations in [34], one
can take k as large as logc x for some small absolute constant c (e.g. c = 1/5), so
that the residue class q mod p is guaranteed to capture � log2 x primes in Q.

There is, however, a difficulty due to the overlap between the residue classes
np mod p. In both of the previous papers [13, 35], the residue classes were selected
randomly and independently of each other, but this led to a slight inefficiency in the
sieving: with each residue class np mod p containing approximately log2 x primes,
probabilistic heuristics suggest that one would have needed the original survivor set

Q ∩ S(ã) to have a size about x
log x

log2 x
log3 x rather than x

log x log2 x if one is to arrive

at O( x
log x ) after the final sieving process. This ultimately leads to the bound

(1.4) G(X) � logX log2 X

log3 X
,

as worked out in unpublished work of the fourth author—an additional loss of log4 x
compared to Theorem 1.

To avoid this difficulty, we use some ideas from the literature on efficient hyper-
graph covering. Of particular relevance is the work of Pippenger and Spencer [37]
in which it is shown that whenever one has a large hypergraph G = (V,E) which is
uniform both in the sense of edges e ∈ E having constant cardinality and also in the
sense of the degrees #{e ∈ E : v ∈ e} being close to constant in v, one can efficiently
cover most of V by almost disjoint edges in E. Unfortunately, the results in [37] are
not directly applicable for a number of technical reasons, the most serious of which
is that the analogous hypergraph in this case (in which the vertices are the sifted
set Q∩S(ã) and the edges are sets of the form {q ∈ Q∩S(ã) : q ≡ np (mod p)} for
various np, p) does not have edges of constant cardinality. However, by modifying
the “Rödl nibble” or “semi-random” method used to prove the Pippenger-Spencer
theorem, we are able to obtain a generalization of that theorem in which the edges
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are permitted to have variable cardinality. This generalization is purely combina-
torial in nature and may be of independent interest beyond the application here to
large prime gaps.

We will make a series of reductions to prove Theorem 1. To aid the reader,
we summarize the chain of implications below, indicating in which section each
implication or theorem is proven (above or below), and in which section one may
find a statement of each theorem (in parentheses),

Thm 5 (§6)
§7,8

=⇒
§6

Thm 4 (§4)

§5
Thm 3 (§4.2)

⇓
Cor 4 (§4.3)

⇓
=⇒
§4,5

Thm 2 (§3) =⇒
§3

Thm 1

The deduction of Theorem 1 from Theorem 2 is easy and codifies the reduction
of the problem to that of finding residue classes for primes in S ∪ (x/2, x] which
cover all the primes in Q with O(x/ log x) exceptions. Theorem 5, proved using the
sieve methods from [34], postulates the existence of a weight function with certain
average properties. It implies the existence of residue classes np mod p for primes
p ∈ (x/2, x], each containing many primes of Q, and moreover that each prime
q ∈ Q ∩ S(ã) is covered by about the same number of these congruence classes
np mod p. These properties are quantified in Theorem 4. Showing that Theorem 4
implies Theorem 2, i.e. that there exist choices for np which efficiently cover most
of the primes in q ∈ Q ∩ S(ã), is accomplished with our new hypergraph covering
tool. The fundamental result is Theorem 3, which is written in a very general form
and is consequently rather long to state. Corollary 4 is a somewhat shorter version
specialized for our purposes.

For ease of reading, we have endeavored to separate the combinatorial arguments
of Sections 4, 5, and 6 from the number theoretic arguments of Sections 7 and 8.
Indeed, a reader only interested in our hypergraph covering result Theorem 3 can
read Sections 4 and 5 as a stand-alone paper. A reader only interested in the
number theoretic part of Theorem 1 can just read Sections 7 and 8 provided they
are willing to assume the reduction of Theorem 2 to Theorem 5. The deduction
of Theorem 2 from the purely combinatorial Corollary 4 and the purely number
theoretic Theorem 5 is performed in the second half of Section 4 and in Section 6,
and does not require reading the more specialized Section 5, 7, or 8.

2. Notational conventions

In most of the paper, x will denote an asymptotic parameter going to infinity,
with many quantities allowed to depend on x. The symbol o(1) will stand for a
quantity tending to zero as x → ∞. The same convention applies to the asymptotic
notation X ∼ Y , which means X = (1 + o(1))Y . We use X = O(Y ), X � Y , and
Y � X to denote the claim that there is a constant C > 0 such that |X| � CY
throughout the domain of the quantity X. We adopt the convention that C is
independent of any parameter unless such dependence is indicated, e.g. by subscript
such as �k. In all of our estimates here, the constant C will be effective (we will
not rely on ineffective results such as Siegel’s theorem). If we can take the implied
constant C to equal 1, we write f = O�(g) instead. Thus for instance

X = (1 +O�(ε))Y
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is synonymous with

(1− ε)Y � X � (1 + ε)Y.

Finally, we use X 	 Y synonymously with X � Y � X.
When summing or taking products over the symbol p, it is understood that p is

restricted to be prime.
Given a modulus q and an integer n, we use n mod q to denote the congruence

class of n in Z/qZ.
Given a set A, we use 1A to denote its indicator function, and thus 1A(x) is equal

to 1 when x ∈ A and zero otherwise. Similarly, if E is an event or statement, we
use 1E to denote the indicator, equal to 1 when E is true and 0 otherwise. Thus
for instance 1A(x) is synonymous with 1x∈A.

We use #A to denote the cardinality of A, and for any positive real z, we let
[z] := {n ∈ N : 1 � n � z} denote the set of natural numbers up to z.

Our arguments will rely heavily on the probabilistic method. Our random vari-
ables will mostly be discrete (in the sense that they take at most countably many
values), although we will occasionally use some continuous random variables (e.g.
independent real numbers sampled uniformly from the unit interval [0, 1]). As such,
the usual measure-theoretic caveats such as “absolutely integrable,” “measurable,”
or “almost surely” can largely be ignored by the reader in the discussion below.
We will use boldface symbols such as X or a to denote random variables (and
non-boldface symbols such as X or a to denote deterministic counterparts of these
variables). Vector-valued random variables will be denoted in arrowed boldface,
e.g. �a = (as)s∈S might denote a random tuple of random variables as indexed by
some index set S.

We write P for probability, and E for expectation. If X takes at most countably
many values, we define the essential range of X to be the set of all X such that
P(X = X) is non-zero, and thus X almost surely takes values in its essential range.
We also employ the following conditional expectation notation. If E is an event of
non-zero probability, we write

P(F |E) :=
P(F ∧E)

P(E)

for any event F , and

E(X|E) :=
E(X1E)

P(E)

for any (absolutely integrable) real-valued random variable X. If Y is another
random variable taking at most countably many values, we define the conditional
probability P(F |Y) to be the random variable that equals P(F |Y = Y ) on the
event Y = Y for each Y in the essential range of Y, and similarly we define the
conditional expectation E(X|Y) to be the random variable that equals E(X|Y = Y )
on the event Y = Y . We observe the idempotency property

(2.1) E(E(X|Y)) = EX

whenever X is absolutely integrable and Y takes at most countably many values.
We will make frequent use of the basic inequalities of Markov

(2.2) P(X � λ) � μ

λ
, μ = EX > 0, λ > 0,
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and Chebyshev

(2.3) P
(
|X − μ| � λ

√
E|X − μ|2

)
� 1

λ2
, λ > 0, μ = EX ∈ R, E|X − μ|2 > 0.

The latter implies, when the variance E|X −μ|2 is small, that a random variable is
highly concentrated.

Lemma 2.1. Suppose that for some A > 0 and 0 < ε < 1 we have

μ = EX = A(1 +O�(ε)), EX2 = A2(1 +O�(ε)).

Then, for any δ > ε we have

P(|X −A| � δA) � 4ε

(δ − ε)2
.

Proof. We first derive an upper bound on the variance

E|X − μ|2 = EX2 − μ2 = A2O�(ε+ 2ε+ ε2) � 4εA2.

Then, using (2.3), we obtain

P(|X −A| � δA) � P (|X − μ| � (δ − ε)A)

� P

(
|X − μ| � δ − ε

2
√
ε

√
E|X − μ|2

)
� 4ε

(δ − ε)2
. �

We also require Hoeffding’s inequality (see e.g. [16, Theorem 7.20]).

Lemma 2.2. Let X1, . . . , Xm be independent random variables with EXi = 0 and
|Xi| � Bi almost surely for each i. Then, for any real t > 0,

P (|X1 + · · ·+Xm| � t) � 2 exp

(
− t2

2(B2
1 + · · ·+B2

m)

)
.

3. Sieving a set of primes

We begin by using a variant of the Westzynthius-Erdős-Rankin method to reduce
this problem to a problem of sieving a setQ of primes in [y]\[x], rather than integers
in [y]\[x].

Given a large real number x, define

(3.1) y := cx
log x log3 x

log2 x
,

where c is a certain (small) fixed positive constant. Also let

(3.2) z := xlog3 x/(4 log2 x),

and introduce the three disjoint sets of primes

S := {s prime : log20 x < s � z},(3.3)

P := {p prime : x/2 < p � x},(3.4)

Q := {q prime : x < q � y}.(3.5)

For residue classes �a = (as mod s)s∈S and �b = (bp mod p)p∈P , define the sifted sets

S(�a) := {n ∈ Z : n �≡ as (mod s) for all s ∈ S}
and likewise

S(�b) := {n ∈ Z : n �≡ bp (mod p) for all p ∈ P}.
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We then have the following theorem.

Theorem 2 (Sieving primes). Let x be sufficiently large, and suppose that y obeys

(3.1). Then there are vectors �a = (as mod s)s∈S and �b = (bp mod p)p∈P , such that

(3.6) #(Q∩ S(�a) ∩ S(�b)) � x

log x
.

We prove Theorem 2 in subsequent sections. Here, we show how this theorem
implies (1.1), and hence Theorem 1.

Let �a and �b be as in Theorem 2. We extend the tuple �a to a tuple (ap)p�x of
congruence classes ap mod p for all primes p � x by setting ap := bp for p ∈ P and
ap := 0 for p �∈ S ∪ P, and consider the sifted set

T := {n ∈ [y]\[x] : n �≡ ap (mod p) for all p � x}.

The elements of T , by construction, are not divisible by any prime in (0, log20 x] or
in (z, x/2]. Thus, each element either must be a z-smooth number (i.e. a number
with all prime factors at most z) or must consist of a prime greater than x/2,
possibly multiplied by some additional primes that are all at least log20 x. However,
from (3.1) we know that y = o(x log x). Thus, we see that an element of T is
either a z-smooth number or a prime in Q. In the second case, the element lies in

Q ∩ S(�a) ∩ S(�b). Conversely, every element of Q ∩ S(�a) ∩ S(�b) lies in T . Thus, T
only differs from Q∩S(�a)∩S(�b) by a set R consisting of z-smooth numbers in [y].

To estimate #R, let

u :=
log y

log z
,

so from (3.1), (3.2) one has u ∼ 4 log2 x
log3 x . By standard counts for smooth numbers

(e.g. de Bruijn’s theorem [6]) and (3.1), we thus have

#R � ye−u log u+O(u log log(u+2)) =
y

log4+o(1) x
= o

(
x

log x

)
.

Thus, we find that #T � x/ log x.
Next, let C be a sufficiently large constant such that #T is less than the number

of primes in (x,Cx]. By matching each of these surviving elements to a distinct
prime in (x,Cx] and choosing congruence classes appropriately, we thus find con-
gruence classes ap mod p for p � Cx which cover all of the integers in (x, y]. In the
language of Definition 1, we thus have

Y (Cx) � y − x+ 1,

and (1.1) follows from (3.1).

Remark 1. One can replace the appeal to de Bruijn’s theorem here by the simpler
bounds of Rankin [40, Lemma II], if one makes the very minor change of increasing
the 4 in the denominator of (3.2) to 5, and also makes similar numerical changes
to later parts of the argument.

It remains to establish Theorem 2. This is the objective of the remaining sections
of the paper.
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4. Efficient hypergraph covering

In the previous section we reduced matters to obtaining residue classes �a, �b such

that the sifted set Q ∩ S(�a) ∩ S(�b) is small. In this section we use a hypergraph
covering theorem, generalizing a result of Pippenger and Spencer [37], to reduce the

task to that of finding residue classes �b that have large intersections with Q∩S(�a).

4.1. Heuristic discussion. Consider the following general combinatorial problem.
Let (V,Ei)i∈I be a collection of (non-empty) hypergraphs on a fixed finite vertex
set V indexed by some finite index set I. In other words, V and I are finite sets,
and for each i ∈ I, Ei is a (non-empty) collection of subsets of V . The problem
is then to select a single edge ei from each set Ei in such a way that the union⋃

i∈I ei covers as much of the vertex set V as possible. (In the context considered
in [37], one considers choosing many edges from a single hypergraph (V,E), which
in our context would correspond to the special case when (V,Ei) was independent
of i.) One should think of the set V \

⋃
i∈I ei as a sifted version of V , with each ei

representing one step of the sieve.
One simple way to make this selection is a random one: one chooses a random

edge ei uniformly at random from Ei, independently in i. In that case, the proba-
bility that a given vertex v ∈ V survives the sifting (that is, it avoids the random
union

⋃
i∈I ei) is equal to ∏

i∈I

(1− P(v ∈ ei)).

In applications, the index set I is large and the probabilities P(v ∈ ei) are small,
in which case the above expression may be well approximated by

exp(−dI(v)),

where we define the normalized degree dI(v) of v to be the quantity

dI(v) :=
∑
i∈I

P(v ∈ ei).

If we make the informal uniformity assumption

(i) One has dI(v) ≈ d for all (or almost all) vertices v,

we thus expect the sifted set V \
⋃

i∈I ei to have density approximately exp(−d).
Can one do better than this? Choosing the ei independently is somewhat inef-

ficient because it allows different random edges ei, ej to collide with each other. If
we could somehow modify the coupling between the ei so that they were always
disjoint, then the probability that a given vertex v ∈ V survives the sieve would
now become

1−
∑
i∈I

P(v ∈ ei) = 1− dI(v).

This suggests that one could in principle lower the density of the sifted set from
exp(−d) to 1 − d (or max(1 − d, 0), since the density clearly cannot be negative),
and in particular to sift out V almost completely as soon as d exceeds 1.

Suppose for the moment that such an optimal level of sieve efficiency is possible,
and return briefly to consideration of Theorem 2. We set the vertex set V equal to
Q∩ S(�a) for some suitable choice of �a. If we set

y := cx
log x log3 x

log2 x
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for some small c > 0 (in accordance with (3.1)), then standard probabilistic heuris-
tics (together with Mertens’ theorem and (3.1), (3.3)) suggest that V should have
cardinality about

y

log x
×

∏
s∈S

(
1− 1

s

)
≈ c

x

log x
log2 x,

so in particular this set is roughly c log2 x times larger than P. In later sections, we
will use the multidimensional sieve from [35], [34] to locate for most primes p in P
a large number of residue classes bp mod p that each intersect Q∩ S(�a) in roughly
	 log2 x elements on the average. If we let Ep be the set of all such intersections

(bp mod p) ∩ V , then the task of making Q ∩ S(�a) ∩ S(�b) small is essentially the
same as making the sifted set V \

⋃
p∈P ep small, for some suitable edges ep drawn

from Ep. By double counting, the expected density d here should be roughly

d 	 #P × log2 x

#V
	 1

c
,

and so one should be able to sieve out Q ∩ S(�a) more or less completely once c
is small enough if one had optimal sieving. In contrast, if one used independent

sieving, one would expect the cardinality of Q ∩ S(�a) ∩ S(�b) to be something like
exp(−1/c) × c x

log x log2 x, which would only be acceptable if c was slightly smaller

than 1
log3 x . This loss of log3 x ultimately leads to the loss of log4 X in (1.4) as

compared against Theorem 1.
It is thus desirable to obtain a general combinatorial tool for achieving near-

optimal sieve efficiency for various collections (V,Ei)i∈I of hypergraphs. The result
of Pippenger and Spencer [37] (extending previous results of Rödl [42] and Frankl
and Rödl [17], as well as unpublished work of Pippenger) asserts, very roughly
speaking, that one can almost attain this optimal efficiency under some further
assumptions beyond (i), which we state informally as follows:

(ii) The hypergraphs (V,Ei) do not depend on i.
(iii) The normalized codegrees

∑
i∈I P(v, w ∈ ei) for v �= w are small.

(iv) The edges ei of Ei are of constant size, and thus there is a k such that
#ei = k for all i and all ei ∈ Ei.

The argument is based on the Rödl nibble from [42], which is a variant of the
semi-random method from [1]. Roughly speaking, the idea is to break up the index
set I into smaller pieces I1, . . . , Im. For the first I1, we perform a “nibble” by
selecting the ei for i ∈ I1 uniformly and independently. For the next nibble at I2,
we restrict (or condition) the ei for i ∈ I2 to avoid the edges arising in the first
nibble, and then select ei for i ∈ I2 independently at random using this conditioned
distribution. We continue performing nibbles at I3, . . . , Im (restricting the edges at
each nibble to be disjoint from the edges of previous nibbles) until the index set I is
exhausted. Intuitively, this procedure enjoys better disjointness properties than the
completely independent selection scheme, but it is harder to analyze the probability
of success. To achieve the latter task, Pippenger and Spencer rely heavily on the
four hypotheses (i)–(iv).

In our context, hypothesis (iii) is easily satisfied, and (i) can also be established.
Hypothesis (ii) is not satisfied (the Ep vary in p), but it turns out that the argument
of Pippenger and Spencer can easily be written in such a way that this hypothesis
may be discarded. But it is the failure of hypothesis (iv) which is the most severe
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difficulty: the size of the sets ep = (bp mod p) ∩ V can fluctuate quite widely
for different choices of p or bp. This creates an undesirable bias in the iterative
nibbling process: with each nibble, larger edges ei have a reduced chance of survival
compared with smaller edges, simply because they have more elements that could
potentially intersect previous nibbles. Given that one expects the larger edges to be
the most useful for the purposes of efficient sieving, this bias is a significant problem.
One could try to rectify the issue by partitioning the edge sets Ei depending on the
cardinality of the edges, and working on one partition at a time, but this seriously
impacts hypothesis (i) in a manner that we were not able to handle.

Our resolution to this problem is to modify the iterative step of the nibbling
process by reweighting the probability distribution of the ei at each step to cancel
out the bias incurred by conditioning an edge ei to be disjoint from previous nibbles.
It turns out that there is a natural choice of reweighting for this task even when
the normalized degrees dI(v) vary in v. As a consequence, we can obtain a version
of the Pippenger-Spencer theorem in which hypothesis (ii) is essentially eliminated
and (i), (iv) significantly weakened, leaving only (iii) as the main hypothesis. We
remark that a somewhat similar relaxation of hypotheses (i)–(iv) was obtained by
Kahn in [29], although the statement in [29] is not exactly in a form convenient for
our applications here.

4.2. Statement of covering theorem. We now rigorously state the hypergraph
covering theorem that we will use. In order to apply this theorem for our appli-
cation, we will need a probabilistic formulation of this theorem which does not, at
first glance, bear much resemblance to the combinatorial formulation appearing in
[37]; we will discuss the connections between these formulations shortly. We will
also phrase the theorem in a completely quantitative fashion, avoiding the use of
asymptotic notation; this will be convenient for the purposes of proving the theorem
via induction (on the number m of “nibbles”).

Theorem 3 (Probabilistic covering). There exists a constant C0 � 1 such that the
following holds. Let D, r,A � 1, 0 < κ � 1/2, and let m � 0 be an integer. Let
δ > 0 satisfy the smallness bound

(4.1) δ �
(

κA

C0 exp(AD)

)10m+2

.

Let I1, . . . , Im be disjoint finite non-empty sets, and let V be a finite set. For each
1 � j � m and i ∈ Ij, let ei be a random finite subset of V . Assume the following:

• (Edges not too large) With probability 1, we have for all j = 1, . . . ,m and
all i ∈ Ij

(4.2) #ei � r;

• (Each sieve step is sparse) For all j = 1, . . . ,m, i ∈ Ij, and v ∈ V ,

(4.3) P(v ∈ ei) �
δ

(#Ij)1/2
;

• (Very small codegrees) For every j = 1, . . . ,m, and distinct v1, v2 ∈ V ,

(4.4)
∑
i∈Ij

P(v1, v2 ∈ ei) � δ;
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• (Degree bound) If for every v ∈ V and j = 1, . . . ,m we introduce the
normalized degrees

(4.5) dIj (v) :=
∑
i∈Ij

P(v ∈ ei)

and then recursively define the quantities Pj(v) for j = 0, . . . ,m and v ∈ V
by setting

(4.6) P0(v) := 1

and

(4.7) Pj+1(v) := Pj(v) exp(−dIj+1
(v)/Pj(v))

for j = 0, . . . ,m− 1 and v ∈ V , then we have

(4.8) dIj (v) � DPj−1(v) (1 � j � m, v ∈ V )

and

(4.9) Pj(v) � κ (0 � j � m, v ∈ V ).

Then we can find random variables e′i for each i ∈
⋃m

j=1 Ij with the following
properties:

(a) For each i ∈
⋃m

j=1 Ij, the essential support of e′i is contained in the es-

sential support of ei, union the empty set singleton {∅}. In other words,
almost surely e′i either is empty or is a set that ei also attains with positive
probability.

(b) For any 0 � J � m and any finite subset e of V with #e � A − 2rJ , one
has

(4.10) P

⎛
⎝e ⊂ V \

J⋃
j=1

⋃
i∈Ij

e′i

⎞
⎠ =

(
1 +O�(δ1/10

J+1

)
)
PJ(e),

where

(4.11) Pj(e) :=
∏
v∈e

Pj(v).

We prove this theorem in Section 5. It is likely that the smallness condition
(4.1) can be relaxed, for instance by modifying the techniques from [45]. However,
this would not lead to any significant improvement in the final bound on G(X)
in Theorem 1, as in our application the condition (4.1) is already satisfied with
some room to spare. The parameter r does not appear explicitly in the smallness
requirement (4.1), but is implicit in that requirement since the conclusion is trivially
true unless 2r < A.

One may deduce special cases of this theorem which are close to the original
hypergraph covering lemma of Pippenger and Spencer. These were included in an
earlier draft of this paper (as Corollaries 2 and 3), and will now be described in a
future, separate paper.
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4.3. Applying the covering theorem. We now specialize Theorem 3 to a situ-
ation relevant for the application to large prime gaps, given by Corollary 4. Very
roughly, this states that if we have a large collection {ep : p ∈ P ′} of random sub-
sets of a set Q′, then there is a realization of these random variables which covers
almost all of Q′, provided the subsets are suitably “uniform” and all elements of Q
are covered more than once on average. Clearly we cannot hope to cover Q unless
almost all elements are covered at least once on average, and similarly if the subsets
are too highly correlated, then one can easily produce examples where Q′ will not
be covered. Thus some form of both of these assumptions is necessary. For our ap-
plication to prime gaps, the random sets ep will be all elements of Q′ in a randomly
chosen residue class modp (which will be produced by the multidimensional sieve
in the later sections).

Corollary 4. Let x → ∞. Let P ′, Q′ be sets with #P ′ � x and (log2 x)
3 < #Q′ �

x100. For each p ∈ P ′, let ep be a random subset of Q′ satisfying the size bound

(4.12) #ep � r = O

(
log x log3 x

log22 x

)
(p ∈ P ′).

Assume the following:

• (Sparsity) For all p ∈ P ′ and q ∈ Q′,

(4.13) P(q ∈ ep) � x−1/2−1/10.

• (Small codegrees) For any distinct q1, q2 ∈ Q′,

(4.14)
∑
p∈P′

P(q1, q2 ∈ ep) � x−1/20.

• (Elements covered more than once in expectation) For all but at most
1

(log2 x)2#Q′ elements q ∈ Q′, we have

(4.15)
∑
p∈P′

P(q ∈ ep) = C +O�

(
1

(log2 x)
2

)

for some quantity C, independent of q, satisfying

(4.16)
5

4
log 5 � C � 1.

Then for any positive integer m with

(4.17) m � log3 x

log 5
,

we can find random sets e′p ⊆ Q′ for each p ∈ P ′ such that e′p is either empty or a
subset of Q′ which ep attains with positive probability, and that

#{q ∈ Q′ : q �∈ e′p for all p ∈ P ′} ∼ 5−m#Q′

with probability 1− o(1). More generally, for any Q′′ ⊂ Q′ with cardinality at least

(#Q′)/
√
log2 x, one has

#{q ∈ Q′′ : q �∈ e′p for all p ∈ P ′} ∼ 5−m#Q′′

with probability 1 − o(1). The decay rates in the o(1) and ∼ notation are uniform
in P ′, Q′, Q′′.
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Remarks. For the arguments in this paper, we only need the case Q′′ = Q′, but
the more general situation Q′′ ⊂ Q′ will be of use in the sequel [15] of this paper
when we consider chains of large gaps.

From (4.13) and (4.15), it follows that #P ′ � x1/2+1/10.

Proof. It suffices to establish the claim for x sufficiently large, as the claim is
trivial for bounded x. The number of exceptional elements q of Q′ that fail (4.15)
is o(5−m#Q′′), thanks to (4.17). Thus we may discard these elements from Q′ and
assume that (4.15) holds for all q ∈ Q′ and deduce the conclusions of the corollary
with the modified set Q′.

By (4.16), we may find disjoint intervals I1, . . . ,Im in [0, 1] with length

(4.18) |Ij | =
51−j log 5

C

for j = 1, . . . ,m. Let�t = (tp)p∈P′ be a tuple of elements tp of [0, 1] drawn uniformly
and independently at random for each p ∈ P ′ (independently of the ep), and define
the random sets

Ij = Ij(�t) := {p ∈ P ′ : tp ∈ Ij}
for j = 1, . . . ,m. These sets are clearly disjoint.

We will verify (for a suitable choice of �t) the hypotheses of Theorem 3 with the
indicated sets Ij and random variables ep, and with suitable choices of parameters
D, r,A � 1, 0 < κ � 1/2, and V = Q′.

Set

(4.19) δ := x−1/20,

and observe from (4.13) and #P ′ � x that one has

(4.20) P(q ∈ ep) �
δ

(#Ij)1/2

for all j = 1, . . . ,m, p ∈ Ij , and q ∈ Q′. Clearly the small codegree condition (4.14)
implies that

(4.21)
∑
p∈Ij

P(q1, q2 ∈ ep) � δ (1 � j � m).

Let q ∈ Q′, 1 � j � m, and consider the independent random variables

(X
(q,j)
p (�t))p∈P′ , where

X(q,j)
p (�t) =

{
P(q ∈ ep) if p ∈ Ij

0 otherwise.

By (4.15), (4.16), and (4.18), for every j and every q ∈ Q′,∑
p∈P′

EX(q,j)
p (�t) =

∑
p∈P′

P(q ∈ ep)P(p ∈ Ij(�t))

= |Ij |
∑
p∈P′

P(q ∈ ep) = 51−j log 5 +O�

(
4/5

(log2 x)
2

)
.
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By (4.13), we have |X(q,j)
p (�t)| � x−1/2−1/10 for all p, and hence by Hoeffding’s

inequality (Lemma 2.2),

P

⎛
⎝
∣∣∣∣∣∣
∑
p∈P′

(X(q,j)
p (�t)− EX(q,j)

p (�t))

∣∣∣∣∣∣ �
1

(log2 x)
2

⎞
⎠ � 2 exp

{
− (log2 x)

−4

2x−1−1/5#Ij

}

� 2 exp

{
− x1/5

(log2 x)
4

}
� 1

x200
.

By the upper bound on #Q′, there is a deterministic choice �t of �t (and hence
I1, . . . , Im) such that for every q ∈ Q′ and every j = 1, . . . ,m, we have∣∣∣∣∣∣

∑
p∈P′

(X(q,j)
p (�t)− EX(q,j)

p (�t))

∣∣∣∣∣∣ <
1

(log2 x)
2
.

We fix this choice �t (so that the Ij are now deterministic), and we conclude that

(4.22)
∑
p∈P′

X(q,j)
p (�t) =

∑
p∈Ij

P(q ∈ ep) = 51−j log 5 + O�

(
2

(log2 x)
2

)

uniformly for all j = 1, . . . ,m, and all q ∈ Q′.
Inserting (4.22) into the definition (4.5) of dIj (q) and using the bound (4.17) on

m, we now have

dIj (q) = (1 +O�(2/ log2 x))5
−j+1 log 5

for all q ∈ Q′ and 1 � j � m. A routine induction using (4.6), (4.7) then shows
(for x sufficiently large) that

Pj(q) = (1 +O�(4j/ log2 x))5
−j (0 � j � m),

and hence that

(4.23) Pj(q) = 5−j(1 +O�((log2 x)
−ν)) (0 � j � m),

where ν = log(5/4)/ log 5. In particular we have

dIj (q) � DPj−1(q) (1 � j � m)

for some D = O(1), and

Pj(q) � κ (1 � j � m),

where

κ � 5−m.

We now set

A := 2rm+ 2.

By our bounds on m (4.17) and r (4.12),

A � log x log23 x

log22 x
,

and so
κA

C0 exp(AD)
� exp

(
−O

(
log x log33 x

log22 x

))
.
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By (4.17) and (4.19), we see that

δ1/10
m+2 � exp

(
− log x

2000(log2 x)
log 10/ log 5

)
,

and so (4.1) is satisfied x is large enough (note that log 10/ log 5 < 2). Thus all
the hypotheses of Theorem 3 have been verified for this choice of parameters (note
that A, κ, and D are independent of P ′, Q′).

Applying Theorem 3 (with V = Q′) and using (4.23), one thus obtains random
variables e′p for p ∈

⋃m
j=1 Ij whose essential range is contained in the essential range

of ep together with ∅, such that

(4.24) P

⎛
⎝q �∈

m⋃
j=1

⋃
p∈Ij

e′p

⎞
⎠ = 5−m

(
1 +O((log2 x)

−ν)
)

for all q ∈ Q′, and

(4.25) P

⎛
⎝q1, q2 �∈

m⋃
j=1

⋃
p∈Ij

e′p

⎞
⎠ = 5−2m

(
1 +O((log2 x)

−ν)
)

for all distinct q1, q2 ∈ Q′.
Set e′p = ∅ for p ∈ P ′\

⋃m
j=1 Ij . Let Q′′ be as in the corollary, and consider the

random variable

Y := #{q ∈ Q′′ : q �∈ e′p for all p ∈ P ′} =
∑
q∈Q′′

1q �∈
⋃m

j=1

⋃
p∈Ij

e′
p
.

Using (4.24) and (4.25), we obtain

EY = 5−m
(
1 +O((log2 x)

−ν)
)
#Q′′

and

EY2 = 5−2m
(
1 +O((log2 x)

−ν)
)
(#Q′′)2 +O(5−m#Q′′)

= 5−2m
(
1 +O((log2 x)

−ν)
)
(#Q′′)2,

(here we use (4.17) and the mild bound #Q′′ > (log2 x)
2), and so from Lemma 2.1

we have

Y ∼ 5−m#Q′′

with probability 1− o(1), as required. �

In view of the above corollary, we may now reduce Theorem 2 to the following
claim.

Theorem 4 (Random construction). Let x be a sufficiently large real number and
define y by (3.1). Then there is a quantity C with

(4.26) C 	 1

c

with the implied constants independent of c, a tuple of positive integers (h1, . . . , hr)
with r �

√
log x, and some way to choose random vectors �a = (as mod s)s∈S and

�n = (np)p∈P of congruence classes as mod s and integers np, respectively, obeying
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the following:

• For every �a in the essential range of �a, one has

(4.27) P(q ∈ ep(�a)|�a = �a) � x−1/2−1/10 (p ∈ P),

where ep(�a) := {np + hip : 1 � i � r} ∩ Q ∩ S(�a).
• With probability 1− o(1) we have that

(4.28) #(Q ∩ S(�a)) ∼ 80c
x

log x
log2 x.

• Call an element �a in the essential range of �a good if, for all but at most
x

log x log2 x elements q ∈ Q ∩ S(�a), one has

(4.29)
∑
p∈P

P(q ∈ ep(�a)|�a = �a) = C +O�

(
1

(log2 x)
2

)
.

Then �a is good with probability 1− o(1).

We now show why Theorem 4 implies Theorem 2. By (4.26), we may choose
0 < c < 1/2 small enough so that (4.16) holds. Take

m =

⌊
log3 x

log 5

⌋
.

Now let �a and �n be the random vectors guaranteed by Theorem 4. Suppose that we
are in the probability 1− o(1) event that �a takes a value �a which is good and such
that (4.28) holds. Fix some �a within this event. We may apply Corollary 4 with
P ′ = P and Q′ = Q ∩ S(�a) for the random variables np conditioned to �a = �a. A
few hypotheses of the corollary must be verified. First, (4.15) follows from (4.29).
The small codegree condition (4.14) is also quickly checked. Indeed, for distinct
q1, q2 ∈ Q′, if q1, q2 ∈ ep(�a), then p|q1 − q2. But q1 − q2 is a nonzero integer of size
at most x log x and is thus divisible by at most one prime p0 ∈ P ′. Hence∑

p∈P′

P(q1, q2 ∈ ep(�a)) = P(q1, q2 ∈ ep0
(�a)) � x−1/2−1/10,

the sum on the left side being zero if p0 does not exist. By Corollary 4, there exist
random variables e′p(�a), whose essential range is contained in the essential range of
ep(�a) together with ∅, and satisfying

{q ∈ Q ∩ S(�a) : q �∈ e′p(�a) for all p ∈ P} ∼ 5−m#(Q∩ S(�a)) � x

log x

with probability 1− o(1), where we have used (4.28). Since e′p(�a) = {n′
p+hip : 1 �

i � r} ∩ Q ∩ S(�a) for some random integer n′
p, it follows that

{q ∈ Q ∩ S(�a) : q �≡ n′
p (mod p) for all p ∈ P} � x

log x

with probability 1 − o(1). Taking a specific �n′ = �n′ for which this relation holds
and setting bp = n′

p for all p concludes the proof of the claim (3.6) and establishes
Theorem 2.

It remains to establish Theorem 4. This will be achieved in later sections.
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5. Proof of the covering theorem

We now prove Theorem 3. Let C0 be a sufficiently large absolute constant.
We induct on m. The case m = 0 is vacuous, so suppose that m � 1 and that

the claim has already been proven for m − 1. Let D, r,A, κ, δ, Ij, ei, V be as in
the theorem. By the induction hypothesis, we can already find random variables
e′i for i ∈

⋃m−1
j=1 Ij obeying the conclusions (a), (b) of the theorem for m − 1. In

particular, we may form the partially sifted set

W := V \
m−1⋃
j=1

⋃
i∈Ij

e′i,

and we have

(5.1) P(e ⊂ W) = (1 +O�(δ1/10
m

))Pm−1(e)

whenever e ⊂ V has cardinality #e � A− 2r(m− 1).
Our task is then to construct random variables e′i for i ∈ Im, possibly coupled

with existing random variables such as W, whose essential range is contained in
that of ei together with the empty set, and such that

(5.2) P

(
e ⊂ W\

⋃
i∈Im

e′i

)
=

(
1 +O�(δ1/10

m+1

)
)
Pm(e)

for all finite subsets e of V with #e � A − 2rm. Note that we may assume that
A > 2rm, as the claim (4.10) is trivial otherwise. In particular we have

(5.3) A− 2r(m− 1) > 2r.

From (4.9), (4.11) we note that

(5.4) Pj(ẽ) � κ#ẽ

whenever j = 1, . . . ,m and all ẽ ⊂ V . In particular, by (5.4) and (4.2), whenever
ẽi is in the essential range of ei, we have

(5.5) Pj(ẽi) � κr.

For future reference, we observe that from (5.3) and (4.1), we have

(5.6) rκ−r � Aκ−r � A2κ−2r � A2Dκ−A � δ−1/10m+2

.

For each i ∈ Im, and every W in the essential range of W, define the normaliza-
tion factor

(5.7) Xi(W ) := E

(
1ei⊂W

Pm−1(ei)

)
=

∑
ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)
.

We will see shortly, and this is crucial to our argument, that Xi(W) concentrates
to 1. With this in mind, we let Fi = Fi(W) be the event that

(5.8) |Xi(W)− 1| � δ
1

3×10m .

Very small values of Xi(W ), in particular sets W with Xi(W ) = 0, are problematic
for us and must be avoided. Fortunately, this occurs with very small probability.
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We now define the random variables e′i for i ∈ Im. If Fi(W) fails, we set e′i = ∅.
Otherwise, if Fi(W) holds, then after conditioning on a fixed value W of W, we
choose e′i from the essential range of ei using the conditional probability distribution

(5.9) P(e′i = ẽi|W = W ) :=
1ẽi⊂W

Xi(W )

P(ei = ẽi)

Pm−1(ẽi)

for all ẽi in the essential range of ei, and we also require that the e′i are conditionally
jointly independent for i ∈ Im on each event W = W . Note from (5.7) that
(5.9) defines a probability distribution, and so the e′i are well defined as random
variables. Informally, e′i is ei conditioned to the event ei ⊂ W , and then reweighted
by Pm−1(ei) to compensate for the bias caused by this conditioning.

Lemma 5.1. We have

P(Fi(W)) = 1−O(δ
1

3×10m ).

Proof. By Lemma 2.1, it suffices to show that

(5.10) EXi(W) = 1 +O(δ
1

10m )

and

(5.11) E(Xi(W)2) = 1 +O(δ
1

10m ).

We begin with (5.10). Let ẽi be in the essential range of ei. From (4.2) and (5.3)
we have

#ẽi � r � A− 2r(m− 1),

and thus by (5.7) and (5.1), we have

EXi(W) =
∑
W

P(W = W )
∑

ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)

=
∑
ẽi

P(ei = ẽi)
P(ẽi ⊂ W)

Pm−1(ẽi)
= 1 +O�(δ

1
10m ).

Now we show (5.11). Let ẽi and êi be in the essential range of ei. From (4.2),
(5.3) we have

#ẽi ∪ êi � A− 2r(m− 1),

from (4.11) we have

Pm−1(ẽi ∪ êi)

Pm−1(ẽi)Pm−1(êi)
=

1

Pm−1(ẽi ∩ êi)
,

and thus by (5.7) and (5.1) we have

E(Xi(W)2) =
∑
ẽi,êi

P(ei = ẽi)P(ei = êi)
P(ẽi ∪ êi ⊂ W)

Pm−1(ẽi)Pm−1(êi)

=
(
1 +O�(δ

1
10m )

) ∑
ẽi,êi

P(ei = ẽi)P(ei = êi)

Pm−1(ẽi ∩ êi)
.
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The denominator Pm−1(ẽi ∩ êi) is 1 if ẽi ∩ êi = ∅, and is at least κr otherwise,
thanks to (5.5). Thus, by (4.2), (4.3) and a union bound,

∑
ẽi,êi

P(ei = ẽi)P(ei = êi)

Pm−1(ẽi ∩ êi)
= 1 +O

(
κ−r

∑
ẽi

P(ei = ẽi)
∑
v∈ẽi

P(v ∈ ei)

)

= 1 +O(rδκ−r),

and the claim (5.11) follows from (5.6). �

It remains to verify (5.2). Let e be a fixed subset of V with

(5.12) #e � A− 2rm.

For any W in the essential range of W, let Y (W ) denote the quantity

Y (W ) := P

(
e ⊂ W\

⋃
i∈Im

e′i|W = W

)
.

From (4.7), (4.11), (2.1), our task is now to show that

EY (W) =
(
1 +O�(δ1/10

m+1

)
)
Pm−1(e) exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
.

Clearly Y (W) is non-zero only when e ⊂ W. From (5.1) we have

(5.13) P(e ⊂ W) = (1 + O�(δ1/10
m

))Pm−1(e),

so it will suffice to show that

E(Y (W)|e ⊂ W) =
(
1 +O(δ

1
9×10m )

)
exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
.

From (4.8), (5.12), and (4.1), we have

exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
� exp(−AD) � δ1/10

m+2

,

so it suffices to show that

(5.14) E(Y (W)|e ⊂ W) =
(
1 +O(δ

1
9×10m )

)
exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
+O(δ

1
8×10m ).

Suppose that W is in the essential range of W with e ⊂ W . As the e′i, i ∈ Im, are
jointly conditionally independent on the event W = W , we may factor Y (W ) as

Y (W ) =
∏
i∈Im

(1− P(e ∩ e′i �= ∅|W = W )).

Since e′i = ∅ if Fi(W ) fails, we may write

Y (W ) =
∏
i∈Im

(1− 1Fi(W )P(e ∩ e′i �= ∅|W = W )).

Now suppose that i ∈ Im and that W is such that Fi(W ) holds. From the union
bound we have

P(e ∩ e′i �= ∅|W = W ) �
∑
v∈e

P(v ∈ e′i|W = W ).
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From (5.9), (5.8), and (5.5), we have

P(v ∈ e′i|W = W ) =
∑

ẽi:v∈ẽi

P(e′i = ẽi|W = W ) � κ−rP(v ∈ ei),

and hence by (4.3), (5.12)

P(e ∩ e′i �= ∅|W = W ) � Aκ−rδ/(#Im)1/2.

From Taylor’s expansion, we then have

1− 1Fi(W )P(e ∩ e′i �= ∅|W = W )

= exp
(
−1Fi(W )P(e ∩ e′i �= ∅|W = W ) +O((Aκ−rδ)2/#Im)

)
.

From (5.6), we have (Aκ−rδ)2 = O(δ
1

9×10m ), and so

Y (W ) = (1 +O(δ
1

9×10m )) exp

(
−1Fi(W )

∑
i∈Im

P(e ∩ e′i �= ∅|W = W )

)
.

Next, we apply inclusion-exclusion to write

P(e ∩ e′i �= ∅|W = W )

=
∑
v∈e

P(v ∈ e′i|W = W )−O

⎛
⎝ ∑

v,w∈e:v �=w

P(v, w ∈ e′i|W = W )

⎞
⎠ .

The error term is handled by summing (5.9) over all ẽi with v, w ∈ ẽi, and using
(5.8) and (5.5). For distinct v, w ∈ e, we have

P(v, w ∈ e′i|W = W )

=
∑

ẽi:v,w∈ẽi

P(e′i = ẽi|W = W ) � κ−r
∑

ẽi:v,w∈ẽi

P(ei = ẽi) � κ−rP(v, w ∈ ei).

Hence by (4.4), (5.12)∑
i∈Im

∑
v,w∈e
v �=w

P(v, w ∈ e′i|W = W ) � κ−rA2 max
v,w∈e
v �=w

∑
i∈Im

P(v, w ∈ ei) � A2κ−rδ.

From (5.6), we have A2κ−rδ = O(δ
1

9×10m ), and so

Y (W ) = (1 +O(δ
1

9×10m )) exp

(
−1Fi(W )

∑
v∈e

∑
i∈Im

P(v ∈ e′i|W = W )

)
.

Also we trivially have 0 � Y (W ) � 1. Thus, to prove (5.14), it suffices to show
that ∑

v∈e

∑
i∈Im

1Fi(W)P(v ∈ e′i|W) =
∑
v∈e

dIm(v)

Pm−1(v)
+O(δ

1
9×10m )

with probability 1 − O(δ
1

8×10m ), conditionally on the event that e ⊂ W. From
(5.12), (5.6), and the union bound, it thus suffices to show that for each v ∈ e, one
has

(5.15)
∑
i∈Im

1Fi(W)P(v ∈ e′i|W) =
dIm(v)

Pm−1(v)
+O(δ

1
8×10m )

with probability 1−O(δ
1

7×10m ), conditionally on the event that e ⊂ W.
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We have

(5.16) 1Fi(W)P(v ∈ e′i|W) =
1Fi(W)

Xi(W)

∑
ẽi:v∈ẽi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)

and, by (5.8),

(5.17)
1Fi(W)

Xi(W)
= 1 +O((1− 1Fi(W)) + δ

1
3×10m ).

Upon inserting (5.16) and (5.17) into (5.15), the left side of (5.15) breaks into two
pieces, a “main term” and an “error term.”

Let us first estimate the error∑
i∈Im

O
(
1− 1Fi(W) + δ

1
3×10m

) ∑
ẽi:v∈ẽi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)
.

By (5.5) and (4.5), we may bound this by

O(κ−r)
∑
i∈Im

(1−1Fi(W)+ δ
1

3×10m ))P(v ∈ ei) = O(κ−r)dIm(v)(1−1Fi(W)+ δ
1

3×10m ).

By Lemma 5.1, the unconditional expectation of this random variable is

O
(
κ−rδ

1
3×10m dIm(v)

)
.

Thus, by (5.13), the conditional expectation of this random variable to the event
e ⊂ W is

� κ−rδ
1

3×10m
dIm(v)

Pm−1(e)
� κ−Aδ

1
3×10m .

Here we used (4.8), (5.5), and (5.3) to obtain the second bound. By (5.6), this can
be bounded by

O(δ
2

7×10m ).

Thus, by Markov’s inequality, this error isO(δ
1

7×10m ) with probability 1−O(δ
1

7×10m ),
conditionally on e ⊂ W. By the triangle inequality, it thus suffices to show that
the main term satisfies∑

i∈Im

∑
ẽi:v∈ẽi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)
=

dIm(v)

Pm−1(v)
+O(δ

1
8×10m )

with probability 1−O(δ
1

7×10m ), conditionally on e ⊂ W.
By a conditional version of Lemma 2.1 (replacing EX and EX2 with E(X|E)

and E(X2|E), respectively), together with (4.8), (4.1), it suffices to show that

(5.18) E

(∑
i∈Im

∑
ẽi:v∈ẽi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)

∣∣∣e ⊂ W

)
=

dIm(v)

Pm−1(v)
+O(δ

1
2×10m )

and

E

( ∑
i,i′∈Im

∑
ẽi:v∈ẽi
êi:v∈êi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)
1êi⊂W

P(ei′ = êi)

Pm−1(êi)

∣∣∣e ⊂ W

)
(5.19)

=

(
dIm(v)

Pm−1(v)

)2

+O(δ
1

2×10m ).
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We begin with (5.18). For any given i ∈ Im, we have from (5.1), (5.3) that

P(e ∪ ẽi ⊂ W)

P(e ⊂ W)
= (1 +O(δ1/10

m

))
Pm−1(e ∪ ẽi)

Pm−1(e)
.

By (4.11), we can rewrite

Pm−1(e ∪ ẽi)

Pm−1(ẽi)Pm−1(e)
=

1

Pm−1(v)Pm−1(ẽi ∩ e\{v}) .

By (2.1), we may thus write the left-hand side of (5.18) as∑
i∈Im

∑
ẽi:v∈ẽi

P(ei = ẽi)

Pm−1(ẽi)

P(e ∪ ẽi ⊂ W)

P(e ⊂ W)
=

1 +O(δ1/10
m

)

Pm−1(v)

∑
i∈Im

∑
ẽi:v∈ẽi

P(ei = ẽi)

Pm−1(ẽi ∩ e\{v}) .

As in the proof of Lemma 5.1, Pm−1(ẽi ∩ e\{v}) equals 1 unless ẽi and e\{v} have
a common element, in which case it is � κr by (5.5). Thus

1

Pm−1(ẽi ∩ e\{v}) = 1 +O

⎛
⎝κ−r

∑
w∈e\{v}

1w∈ẽi

⎞
⎠ .

From (4.5) one has ∑
i∈Im

∑
ẽi:v∈ẽi

P(v ∈ ei) = dIm(v),

and from (4.4) one has ∑
i∈Im

P(v, w ∈ ei) � δ

for all w �= v. Therefore, by (5.12), the left side of (5.18) is

1 + O(δ1/10
m

)

Pm−1(v)

(
dIm(v) +O(Aδκ−r)

)
.

The claim now follows from (5.6) and (4.8).
Now we prove (5.19). For any i, i′ ∈ Im, we have from (5.1), (5.3) that

P(ẽi ∪ êi ∪ e ⊂ W)

P(e ⊂ W)
= (1 +O(δ1/10

m

))
Pm−1(ẽi ∪ êi ∪ e)

Pm−1(e)
,

so we are reduced (after applying (4.8), (5.6)) to showing that∑
i,i′∈Im

∑
ẽi:v∈ẽi
êi:v∈êi

P(ei = ẽi)P(ei′ = êi)
Pm−1(v)

2Pm−1(ẽi ∪ êi ∪ e)

Pm−1(ẽi)Pm−1(êi)Pm−1(e)
= dIm(v)2+O(δ

1
10m ).

The quantity Pm−1(v)
2Pm−1(ẽi∪êi∪e)

Pm−1(ẽi)Pm−1(êi)Pm−1(e)
is equal to 1 when the intersection of any two

of ẽi, êi, and e is {v}, and is O(κ−2r) otherwise thanks to (5.5). Hence we may
estimate this ratio by

1 +O

⎛
⎝κ−2r

∑
w∈e\{v}

(1w∈ẽi + 1w∈êi)

⎞
⎠+O

⎛
⎝κ−2r

∑
w∈ẽi\{v}

1w∈êi

⎞
⎠ .

From (4.5) one has ∑
i,i′∈Im

P(v ∈ ei)P(v ∈ ei′) = dIm(v)2,
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so from (5.6) it suffices to show that∑
i,i′∈Im

∑
w∈e\{v}

P (v ∈ ei, v ∈ ei′ , w ∈ ei) � DAδ,(5.20)

∑
i,i′∈Im

∑
w∈e\{v}

P (v ∈ ei, v ∈ ei′ , w ∈ ei′) � DAδ,(5.21)

∑
i,i′∈Im

E
[
1v∈ei,v∈ei′ (#(ei ∩ ei′)− 1)

]
� Drδ.(5.22)

For (5.20), we use (4.5) to write the left-hand side as

dIm(v)
∑

w∈e\{v}

∑
i∈Im

P(v, w ∈ ei),

which by (4.8), (5.12), (4.4) is bounded by DAδ, as desired, as well as similarly
for (5.21). For (5.22), we take expectations in ei′ first using (2.1), (4.4) to upper
bound the left-hand side of (5.22) by

∑
i∈Im

E

⎛
⎝1v∈ei

∑
w∈ei\{v}

δ

⎞
⎠ ,

which by (4.2), (4.5), (4.8) is bounded by Drδ, as desired. This proves (5.19), which
implies (5.15) and in turn (5.14). The proof of Theorem 3 is now complete.

6. Using a sieve weight

If r is a natural number, an admissible r-tuple is a tuple (h1, . . . , hr) of distinct
integers h1, . . . , hr that do not cover all residue classes modulo p, for any prime p.
For instance, the tuple (pπ(r)+1, . . . , pπ(r)+r) consisting of the first r primes larger
than r is an admissible r-tuple.

We will establish Theorem 4 by a probabilistic argument involving a certain
weight function, the details of which may be found in the following.

Theorem 5 (Existence of good sieve weight). Let x be a sufficiently large real
number and let y be defined by (3.1). Let P,Q be defined by (3.4), (3.5). Let r be
a positive integer with

(6.1) r0 � r � log1/5 x

for some sufficiently large absolute constant r0, and let (h1, . . . , hr) be an admissible
r-tuple contained in [2r2]. Then one can find a positive quantity

(6.2) τ � x−o(1)

and a positive quantity u = u(r) depending only on r with

(6.3) u 	 log r

and a non-negative function w : P × Z → R+ supported on P × (Z ∩ [−y, y]) with
the following properties:

• Uniformly for every p ∈ P, one has

(6.4)
∑
n∈Z

w(p, n) =

(
1 +O

(
1

log102 x

))
τ

y

logr x
.
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• Uniformly for every q ∈ Q and i = 1, . . . , r, one has

(6.5)
∑
p∈P

w(p, q − hip) =

(
1 +O

(
1

log102 x

))
τ
u

r

x

2 logr x
.

• Uniformly for every h = O(y/x) that is not equal to any of the hi, one has

(6.6)
∑
q∈Q

∑
p∈P

w(p, q − hp) = O

(
1

log102 x
τ

x

logr x

y

log x

)
.

• Uniformly for all p ∈ P and n ∈ Z,

(6.7) w(p, n) = O(x1/3+o(1)).

Remark 2. One should think of w(p, n) as being a smoothed out indicator function
for the event that n + h1p, . . . , n + hrp are all almost primes in [y]. As essentially
discovered in [33], by choosing the smoothing correctly, one can ensure that ap-
proximately log r of the elements of this tuple n + h1p, . . . , n + hrp are genuinely
prime rather than almost prime, when weighted by w(p, n); this explains the pres-
ence of the bounds (6.3). The estimate (6.6) is not, strictly speaking, needed for
our current argument; however, it is easily obtained by our methods, and will be of
use in a follow-up work [15] to this paper in which the analogue of Theorem 1 for
chains of large gaps is established.

The proof of this theorem will rely on the estimates for multidimensional prime-
detecting sieves established by the fourth author in [34], and will be the focus of
subsequent sections. In this section, we show how Theorem 5 implies Theorem 4.

Let x, c, y, z,S,P,Q be as in Theorem 4. We set r to be the maximum value
permitted by Theorem 5, namely

(6.8) r := �log1/5 x�,

and let (h1, . . . , hr) be the admissible r-tuple consisting of the first r primes larger
than r; thus hi = pπ(r)+i for i = 1, . . . , r. From the prime number theorem we

have hi = O(r log r) for i = 1, . . . , r, and so we have hi ∈ [2r2] for i = 1, . . . , r
if x is large enough (there are many other choices possible, e.g. (h1, . . . , hr) =
(12, 32, . . . , (2r − 1)2)). We now invoke Theorem 5 to obtain quantities τ, u and a
weight w : P × Z → R+ with the stated properties.

For each p ∈ P, let ñp denote the random integer with probability density

P(ñp = n) :=
w(p, n)∑

n′∈Z w(p, n
′)

for all n ∈ Z (we will not need to impose any independence conditions on the ñp).
From (6.4), (6.5) we have

(6.9)
∑
p∈P

P(q = ñp + hip) =

(
1 + O

(
1

log102 x

))
u

r

x

2y
(q ∈ Q, 1 � i � r).

Also, from (6.4), (6.7), (6.2), and (3.1), one has

(6.10) P(ñp = n) � x−1/2−1/6+o(1)

for all p ∈ P and n ∈ Z.
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We choose the random vector �a := (as mod s)s∈S by selecting each as mod s
uniformly at random from Z/sZ, independently in s and independently of the ñp.
The resulting sifted set S(�a) is a random periodic subset of Z with density

σ :=
∏
s∈S

(
1− 1

s

)
.

From the prime number theorem (with sufficiently strong error term), (3.2), and
(3.3),

σ =

(
1 +O

(
1

log102 x

))
log(log20 x)

log z
=

(
1 +O

(
1

log102 x

))
80 log2 x

log x log3 x/ log2 x
,

so in particular we see from (3.1) that

(6.11) σy =

(
1 +O

(
1

log102 x

))
80cx log2 x.

We also see from (6.8) that

(6.12) σr = xo(1).

We have a useful correlation bound.

Lemma 6.1. Let t � log x be a natural number, and let n1, . . . , nt be distinct
integers with |ni| � x2 for each i. Then one has

P(n1, . . . , nt ∈ S(�a)) =

(
1 +O

(
1

log16 x

))
σt.

Proof. For each s ∈ S, the integers n1, . . . , nt occupy t distinct residue classes
modulo s, unless s divides one of ni − nj for 1 � i < j � t. Since s � log20 x and

|ni − nj | � 2x2, the latter possibility occurs at most O(t2 log x) = O(log3 x) times.
Thus the probability that as mod s avoids all of the n1, . . . , nt is equal to 1 − t

s

except for O(log3 x) values of s, where it is instead (1 +O( 1
log19 x

))(1− t
s ). Thus,

P(n1, . . . , nt ∈ S(�a)) =

(
1 +O

(
1

log19 x

))O(log3 x) ∏
s∈S

(
1−

(
t

s

))

=

(
1 +O

(
1

log16 x

))
σt

∏
s∈S

(
1 +O

(
t2

s2

))

=

(
1 +O

(
1

log16 x

))
σt. �

Among other things, this gives the claim (4.28).

Corollary 5. With probability 1− o(1), we have

(6.13) #(Q∩ S(�a)) ∼ σ
y

log x
∼ 80c

x

log x
log2 x.

Proof. From Lemma 6.1, we have

E#(Q∩ S(�a)) =

(
1 +O

(
1

log16 x

))
σ#Q
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and

E#
(
(Q∩ S(�a))

)2
=

(
1 +O

(
1

log16 x

))
(σ#Q+ σ2(#Q)(#Q− 1)),

and so by the prime number theorem we see that the random variable #Q∩S(�a) has
mean (1 + o( 1

log2 x ))σ
y

log x and variance O( 1
log16 x

(σ y
log x )

2). The claim then follows

from Lemma 2.1 (with plenty of room to spare). �

For each p ∈ P, we consider the quantity

(6.14) Xp(�a) := P(ñp + hip ∈ S(�a) for all i = 1, . . . , r),

and let P(�a) denote the set of all the primes p ∈ P such that

(6.15) Xp(�a) =

(
1 +O�

(
1

log3 x

))
σr.

In light of Lemma 6.1, we expect most primes in P to lie in P(�a), and this will be
confirmed below (Lemma 6.3). We now define the random variables np as follows.
Suppose we are in the event �a = �a for some �a in the range of �a. If p ∈ P\P(�a),
we set np = 0. Otherwise, if p ∈ P(�a), we define np to be the random integer with
conditional probability distribution

P(np = n|�a = �a) :=
Zp(�a;n)

Xp(�a)
, Zp(�a;n) = 1n+hjp∈S(�a) for j=1,...,rP(ñp = n),

(6.16)

with the np (p ∈ P(�a)) jointly independent, conditionally on the event �a = �a. From
(6.14) we see that these random variables are well defined.

The first claim (4.27) of Theorem 4 now follows immediately from (6.10), (6.16),
and (6.15), and so we are left to establish the final two assertions.

Lemma 6.2. With probability 1− o(1), we have

(6.17) σ−r
r∑

i=1

∑
p∈P(�a)

Zp(�a; q − hip) =

(
1 +O

(
1

log32 x

))
u

σ

x

2y

for all but at most x
2 log x log2 x of the primes q ∈ Q ∩ S(�a).

Let �a be good (recall the definition from Theorem 4) and q ∈ Q ∩ S(�a). Substi-
tuting definition (6.16) into the left-hand side of (6.17), using (6.15), and observing
that q = np + hip is possible only if p ∈ P(�a) (since np = 0 for p ∈ P\P(�a)), we
find that

σ−r
r∑

i=1

∑
p∈P(�a)

Zp(�a; q − hip) = σ−r
r∑

i=1

∑
p∈P(�a)

Xp(�a)P(np = q − hip|�a = �a)

=

(
1 +O

(
1

log3 x

)) r∑
i=1

∑
p∈P(�a)

P(np = q − hip|�a = �a)

=

(
1 +O

(
1

log3 x

))∑
p∈P

P(q ∈ ep(�a)|�a = �a),



LONG GAPS BETWEEN PRIMES 93

where ep(�a) = {np + hip : 1 � i � r} ∩ Q ∩ S(�a) is as defined in Theorem 4.
Relation (4.29) (that is, �a is good with probability 1 − o(1)) follows upon noting
that by (6.8), (6.3), and (6.11),

C :=
u

σ

x

2y
	 1

c
.

Before proving Lemma 6.2, we first confirm that P\P(�a) is small with high
probability.

Lemma 6.3. With probability 1−O(1/ log3 x), P(�a) contains all but O( 1
log3 x

x
log x )

of the primes p ∈ P. In particular, E#P(�a) = #P(1 +O(1/ log3 x)).

Proof. By linearity of expectation and Markov’s inequality, it suffices to show that
for each p ∈ P, we have p ∈ P(�a) with probability 1−O( 1

log6 x
). By Lemma 2.1, it

suffices to show that

(6.18) EXp(�a) = P(ñp + hip ∈ S(�a) for all i = 1, . . . , r) =

(
1 +O

(
1

log12 x

))
σr

and

EXp(�a)
2 = P(ñ(1)

p + hip, ñ
(2)
p + hip ∈ S(�a) for all i = 1, . . . , r)(6.19)

=

(
1 +O

(
1

log12 x

))
σ2r,

where ñ
(1)
p , ñ

(2)
p are independent copies of ñp that are also independent of �a.

The claim (6.18) follows from Lemma 6.1 (performing the conditional expectation
over ñp first). A similar application of Lemma 6.1 allows one to write the left-hand
side of (6.19) as (

1 +O

(
1

log16 x

))
Eσ#{ñ(l)

p +hip:i=1,...,r;l=1,2}.

From (6.10) we see that the quantity #{ñ(l)
p +hip : i = 1, . . . , r; l = 1, 2} is equal to

2r with probability 1−O(x−1/2−1/6+o(1)) and is less than 2r otherwise. The claim
now follows from (6.12). �

Proof of Lemma 6.2. We first show that replacing P(�a) with P has a negligible
effect on the sum, with probability 1− o(1). Fix i and substitute n = q − hip. By
Markov’s inequality, it suffices to show that

(6.20) E
∑
n

σ−r
∑

p∈P\P(�a)

Zp(�a;n) = o

(
u

σ

x

2y

1

r

1

log32 x

x

log x log2 x

)
.

By Lemma 6.1, we have

E
∑
n

σ−r
∑
p∈P

Zp(�a;n) = σ−r
∑
p∈P

∑
n

P(ñp = n)P(n+ hjp ∈ S(�a) for j = 1, . . . , r)

=

(
1 +O

(
1

log16 x

))
#P.
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Next, by (6.15) and Lemma 6.3 we have

E
∑
n

σ−r
∑

p∈P(�a)

Zp(�a;n) = σ−r
∑
�a

P(�a = �a)
∑

p∈P(�a)

Xp(�a)

=

(
1 +O

(
1

log3 x

))
E #P(�a) =

(
1 +O

(
1

log3 x

))
#P;

subtracting, we conclude that the left-hand side of (6.20) is O(#P/ log3 x) =

O(x/ log4 x). The claim then follows from (3.1) and (6.1).
By (6.20), it suffices to show that with probability 1− o(1), for all but at most

x
2 log x log2 x primes q ∈ Q ∩ S(�a), one has

(6.21)

r∑
i=1

∑
p∈P

Zp(�a; q − hip) =

(
1 +O�

(
1

log32 x

))
σr−1u

x

2y
.

Call a prime q ∈ Q bad if q ∈ Q ∩ S(�a) but (6.21) fails. Using Lemma 6.1 and
(6.9), we have

E

[ ∑
q∈Q∩S(�a)

r∑
i=1

∑
p∈P

Zp(�a; q − hip)

]

=
∑
q,i,p

P(q + (hj − hi)p ∈ S(�a) for all j = 1, . . . , r)P(ñp = q − hip)

=

(
1 +O

(
1

log102 x

))
σy

log x
σr−1u

x

2y

and

E

[ ∑
q∈Q∩S(�a)

( r∑
i=1

∑
p∈P

Zp(�a; q − hip)

)2]

=
∑

p1,p2,q
i1,i2

P(q + (hj − hi�)p� ∈ S(�a) for j = 1, . . . , r; � = 1, 2)

× P(ñ(1)
p1

= q − hi1p1)P(ñ
(2)
p2

= q − hi2p2)

=

(
1 +O

(
1

log102 x

))
σy

log x

(
σr−1u

x

2y

)2

,

where (ñ
(1)
p1 )p1∈P and (ñ

(2)
p2 )p2∈P are independent copies of (ñp)p∈P over �a. In the

last step we used the fact that the terms with p1 = p2 contribute negligibly.
By Lemma 2.1 it follows that the number of bad q is � σy

log x
1

log3
2 x

� x
log x log2

2 x

with probability 1−O(1/ log2 x). This concludes the proof. �

It remains to establish Theorem 5. This is the objective of the remaining sections
of the paper.

7. Multidimensional sieve estimates

We now recall a technical multidimensional sieve estimate from [34] (a minor
variant of [34, Proposition 6.1]). In this section we will follow the notation from
[34], which is a little different from that in the rest of this paper, with the exception
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that we will take the set denoted P in that paper to be equal to the set P of all
primes from the outset.

A linear form will be a function L : Z → Z of the form L(n) = l1n + l2 with
integer coefficients l1, l2, and l1 �= 0. Let A be a set of integers. Given a linear form
L(n) = l1n+ l2, we define the sets

A(x) := {n ∈ A : x � n � 2x},
A(x; q, a) := {n ∈ A(x) : n ≡ a (mod q)},
PL,A(x) := L(A(x)) ∩ P,

PL,A(x; q, a) := L(A(x; q, a)) ∩ P,

for any x > 0 and congruence class a mod q, and define the quantity

ϕL(q) := ϕ(|l1|q)/ϕ(|l1|),
where ϕ is the Euler totient function. We recall the standard bounds

(7.1) X � ϕ(X) � X

log2 X

since ϕ(X)/X is smallest when X is composed only of primes � logX. Thanks
to this bound, most factors of the form X

ϕ(X) appearing below become relatively

harmless, and we recommend that they may be ignored for a first reading.

A finite set L = {L1, . . . , Lk} of linear forms is said to be admissible if
∏k

i=1 Li(n)
has no fixed prime divisor; that is, for every prime p there exists an integer np such

that
∏k

i=1 Li(np) is not divisible by p.

Definition 2 ([34]). Let x be a large quantity, let A be a set of integers, let L =
{L1, . . . , Lk} be a finite set of linear forms, and let B be a natural number. We
allow A,L, k, B to vary with x. Let 0 < θ < 1 be a quantity independent of x. Let
L′ be a subset of L. We say that the tuple (A,L,P, B, x, θ) obeys Hypothesis 1 at
L′ if we have the following three estimates:

(1) (A(x) is well distributed in arithmetic progressions) We have∑
q�xθ

max
a

∣∣∣∣#A(x; q, a)− #A(x)

q

∣∣∣∣ � #A(x)

log100k
2

x
.

(2) (PL,A(x) is well distributed in arithmetic progressions) For any L ∈ L′,
we have∑

q�xθ; (q,B)=1

max
a:(L(a),q)=1

∣∣∣∣#PL,A(x; q, a)−
#PL,A(x)

ϕL(q)

∣∣∣∣ � #PL,A(x)

log100k
2

x
.

(3) (A(x) not too concentrated) For any q < xθ and a ∈ Z we have

#A(x; q, a) � #A(x)

q
.

In [34] this definition was only given in the case L′ = L, but we will need the
(mild) generalization to the case in which L′ is a (possibly empty) subset of L.

As is common in analytic number theory, we will have to address the possibility
of an exceptional Siegel zero. As we want to keep all our estimates effective, we will
not rely on Siegel’s theorem or its consequences (such as the Bombieri-Vinogradov
theorem). Instead, we will rely on the Landau-Page theorem, which we now recall.
Throughout, χ denotes a Dirichlet character.
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Lemma 7.1 (Landau-Page theorem). Let Q � 100. Suppose that L(s, χ) = 0 for
some primitive character χ of modulus at most Q, and some s = σ + it. Then
either

1− σ � 1

log(Q(1 + |t|))
or else t = 0 and χ is a quadratic character χQ, which is unique. Furthermore, if
χQ exists, then its conductor qQ is square-free apart from a factor of at most 8 and
obeys the lower bound

qQ � log2 Q

log42 Q
.

Proof. See e.g. [9, Chapter 14]. The final estimate follows from the bound 1−β �
q−1/2 log−2 q for a real zero β of L(s, χ) with χ of modulus q, which can also be
found in [9, Chapter 14]. �

We can then eliminate the exceptional character by deleting at most one prime
factor of qQ—an idea used previously by Hildebrand and Maier [27].

Corollary 6. Let Q � 100. Then there exists a quantity BQ which either is equal
to 1 or is a prime of size

BQ � log2 Q

with the property that

1− σ � 1

log(Q(1 + |t|))
whenever L(σ + it, χ) = 0 and χ is a character of modulus at most Q and coprime
to BQ.

Proof. If the exceptional character χQ from Lemma 7.1 does not exist, then take
BQ := 1; otherwise we take BQ to be the largest prime factor of qQ. As qQ is
square-free apart from a factor of at most 8, we have log qQ � BQ by the prime
number theorem, and the claim follows. �

We will only need the above definition in the following special case.

Lemma 7.2. Let x be a large quantity. Then there exists a natural number B � x,
which is either 1 or a prime, such that the following holds. Let A := Z, let θ := 1/3,
and let L = {L1, . . . , Lk} be a finite set of linear forms Li(n) = ain + bi (which

may depend on x) with k � log1/5 x, 1 � |ai| � log x, and |bi| � x log2 x. Let
x � y � x log2 x, and let L′ be a subset of L such that Li is non-negative on [y, 2y]
and ai is coprime to B for all Li ∈ L′. Then (A,L,P, B, y, θ) obeys Hypothesis 1
at L′ with absolute implied constants (i.e. the bounds in Hypothesis 1 are uniform
over all such choices of L and y).

Proof. Parts (1) and (3) of Hypothesis 1 are easy; the only difficult verification
is (2). We apply Corollary 6 with Q := exp(c1

√
log x) for some small absolute

constant c1 to obtain a quantity B := BQ with the stated properties. By the
Landau-Page theorem (see [9, Chapter 20]), we have that if c1 is sufficiently small,
then we have the effective bound

(7.2) φ(q)−1
∑∗

χ

|ψ(z, χ)| � x exp(−3c
√
log x)
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for all 1 < q < exp(2c
√
log x) with (q, B) = 1 and all z � x log4 x. Here the

summation is over all primitive χ mod q and ψ(z, χ) =
∑

n�z χ(n)Λ(n). Following

a standard proof of the Bombieri-Vinogradov theorem (see [9, Chapter 28], for
example), we have (for a suitable constant c > 0)

∑
q<x1/2−ε

(q,B)=1

sup
(a,q)=1

z�x log4 x

∣∣∣π(z; q, a)− π(z)

φ(q)

∣∣∣ � x exp(−c
√
log x) + log x(7.3)

×
∑

q<exp(2c
√
log x)

(q,B)=1

∑∗

χ

sup
z�x log4 x

|ψ(z, χ)|
φ(q)

.

Combining these two statements and using the triangle inequality gives the bound
required for (2). �

We now recall the construction of sieve weights from [34, Section 7]. On first
reading we recommend the reader not pay too much attention to the details; the
key point is the existence of a weight w(n) which will establish Theorem 5. The
reason it is necessary to know the construction is the technical issue that the weights
w(n) depend on a given admissible set of linear forms, and we require that the final
estimates obtained are essentially uniform over similar admissible sets.

Let W :=
∏

p�2k2; p�B p. For each prime p not dividing B, let rp,1(L) < · · · <
rp,ωL(p)(L) be the elements n of [p] for which p|

∏k
i=1 Li(n). If p is also coprime to

W , then for each 1 � a � ωL(p), let jp,a = jp,a(L) denote the least element of [k]
such that p|Ljp,a(rp,a(L)).

Let Dk(L) denote the set

Dk(L) := {(d1, . . . , dk) ∈ Nk : μ2(d1 · · · dk) = 1; (d1 · · · dk,WB) = 1;

(dj , p) = 1 whenever p � BW and j �= jp,1, . . . , jp,ωL(p)}.

Define the singular series

S(L) :=
∏
p�B

(
1− ωL(p)

p

)(
1− 1

p

)−k

and

SWB(L) :=
∏

p�WB

(
1− ωL(p)

p

)(
1− 1

p

)−k

,

define the function

ϕωL(d) :=
∏
p|d

(p− ωL(p)),

and let R be a quantity of size

xθ/10 � R � xθ/3.

Let F : Rk → R be a smooth function supported on the simplex

Rk = {(t1, . . . , tk) ∈ Rk
+ : t1 + · · ·+ tk � 1}.
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For any (r1, . . . , rk) ∈ Dk(L) define

y(r1,...,rk)(L) :=
1Dk(L)(r1, . . . , rk)W

kBk

ϕ(WB)k
SWB(L)F

(
log r1
logR

, . . . ,
log rk
logR

)
.

For any (d1, . . . , dk) ∈ Dk(L), define

λ(d1,...,dk)(L) := μ(d1 · · · dk)d1 · · · dk
∑

di|ri for i=1,...,k

y(r1,...,rk)(L)
ϕωL(r1 · · · rk)

,

and then define the function w = wk,L,B,R : Z → R+ by

(7.4) w(n) :=

⎛
⎝ ∑

d1,...,dk:di|Li(n) for all i

λ(d1,...,dk)(L)

⎞
⎠

2

.

We note that the restriction of the support of F to Rk means that λ(d1,...,dk)(L)
and y(r1,...,rk) are supported on the set

Sk(L) = Dk(L) ∩ {(d1, . . . , dk) :
k∏

i=1

di � R}.

We then have the following result, a slightly modified form of Proposition 6.1 from
[34].

Theorem 6. Fix θ, α > 0. Then there exists a constant C depending only on θ, α
such that the following holds. Suppose that (A,L,P, B, x, θ) obeys Hypothesis 1
at some subset L′ of L. Write k := #L, and suppose that x � C, B � xα, and

C � k � log1/5 x. Moreover, assume that the coefficients ai, bi of the linear forms
Li(n) = ain + bi in L obey the size bound |ai|, |bi| � xα for all i = 1, . . . , k. Then
there exists a smooth function F : Rk → R depending only on k and supported on
the simplex Rk, and quantities Ik, Jk depending only on k with

Ik � (2k log k)−k

and

(7.5) Jk 	 log k

k
Ik

such that, for w(n) given in terms of F as above, the following assertions hold
uniformly for xθ/10 � R � xθ/3:

• We have

(7.6)
∑

n∈A(x)

w(n) =

(
1 +O

(
1

log1/10 x

))
Bk

ϕ(B)k
S(L)#A(x)(logR)kIk.

• For any linear form L(n) = aLn + bL in L′ with aL coprime to B and
L(n) > R on [x, 2x], we have∑

n∈A(x)

1P(L(n))w(n) =

(
1 +O

(
1

log1/10 x

))
φ(|aL|)
|aL|

Bk−1

ϕ(B)k−1

×S(L)#PL,A(x)(logR)k+1Jk

+O

(
Bk

ϕ(B)k
S(L)#A(x)(logR)k−1Ik

)
.

(7.7)
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• Let L(n) = a0n+ b0 be a linear form such that the discriminant

ΔL := |a0|
k∏

j=1

|a0bj − ajb0|

is non-zero (in particular L is not in L). Then

(7.8)
∑

n∈A(x)

1P∩[xθ/10,+∞)(L(n))w(n) �
ΔL

ϕ(ΔL)

Bk

ϕ(B)k
S(L)#A(x)(logR)k−1Ik.

• We have the crude upper bound

(7.9) w(n) � x2θ/3+o(1)

for all n ∈ Z.

Here all implied constants depend only on θ, α and the implied constants in the
bounds of Hypothesis 1.

Proof. The first estimate (7.6) is given by [34, Proposition 9.1], (7.7) follows from
[34, Proposition 9.2] in the case (aL, B) = 1, (7.8) is given by [34, Proposition 9.4]
(taking ξ := θ/10 and D := 1), and the final statement (7.9) is given by part (iii)
of [34, Lemma 8.5]. The bounds for Jk and Ik are given by [34, Lemma 8.6]. �

We remark that the estimate (7.8) is only needed here to establish the estimate
(6.6) which is not, strictly speaking, necessary for the results of this paper, but will
be useful in a subsequent work [15] based on this paper.

8. Verification of sieve estimates

We can now prove Theorem 5. Let x, y, r, h1, . . . , hr be as in that theorem.
We set

A := Z,

α := 2,

θ := 1/3,

k := r,

R := (x/4)θ/3,

and let B = xo(1) be the quantity from Lemma 7.2.
We define the function w : P × Z → R+ by setting

w(p, n) := 1[−y,y](n)wk,Lp,B,R(n)

for p ∈ P and n ∈ Z, where Lp is the (ordered) collection of linear forms n �→ n+hip
for i = 1, . . . , r, and wk,Lp,B,R was defined in (7.4). Note that the admissibility of
the r-tuple (h1, . . . , hr) implies the admissibility of the linear forms n �→ n+ hip.

A key point is that many of the important components of wk,Lp,B,R are essentially

uniform in p. Indeed, for any prime s, the polynomial
∏k

i=1(n+hip) is divisible by
s only at the residue classes −hip mod s. From this we see that

ωLp
(s) = #{hi (mod s)} whenever s �= p.



100 K. FORD, B. GREEN, S. KONYAGIN, J. MAYNARD, AND T. TAO

In particular, ωLp
(s) is independent of p as long as s is distinct from p, so

S(Lp) =

(
1 +O

(
k

x

))
S,(8.1)

SBW (Lp) =

(
1 +O

(
k

x

))
SBW ,

for some S, SBW independent of p, with the error terms uniform in p. Moreover,
if s � WB, then s > 2k2, so all the hi are distinct mods (since the hi are less than
2k2). Therefore, if s � pWB we have ωLp

(s) = k and

{js,1(Lp), . . . , js,ω(s)(Lp)} = {1, . . . , k}.

Since all p ∈ P are at least x/2 > R, we have s �= p whenever s � R. From this we

see that Dk(Lp)∩ {(d1, . . . , dk) :
∏k

i=1 di � R} is independent of p, and so we have

λ(d1,...,dk)(Lp) =
S(Lp)

S
λ(d1,...,dk) =

(
1 +O

(
k

x

))
λ(d1,...,dk),

for some λ(d1,...,dk) independent of p, and where the error term is independent of
d1, . . . , dk.

It is clear that w is non-negative and supported on P × [−y, y], and from (7.9)
we have (6.7). We set

(8.2) τ := 2
Bk

ϕ(B)k
S(logR)k(log x)kIk

and

(8.3) u :=
ϕ(B)

B

logR

log x

kJk
2Ik

.

Since B is either 1 or prime, we have

ϕ(B)

B
	 1,

and from the definition of R we also have

(8.4)
logR

log x
	 1.

From (7.5) we thus obtain (6.3). From [34, Lemma 8.1(i)] we have

S � x−o(1),

and from [34, Lemma 8.6] we have

Ik = xo(1),

and so we have the lower bound (6.2). (In fact, we also have a matching upper
bound τ � xo(1), but we will not need this.)

It remains to verify the estimates (6.4), (6.5), and (6.6). We begin with (6.4).
Let p be an element of P. We shift the n variable by 3�y� and rewrite∑

n∈Z

w(p, n) =
∑

n∈A(2y�)
wk,Lp−3y�,B,R(n),



LONG GAPS BETWEEN PRIMES 101

where Lp− 3�y� denotes the set of linear forms n �→ n+hip− 3�y� for i = 1, . . . , k.
This set of linear forms remains admissible, and

S(Lp − 3�y�) = S(Lp) =

(
1 +O

(
k

x

))
S.

The claim (6.4) now follows from (8.2) and the first conclusion (7.6) of Theorem 6
(with x replaced by 2�y�, L′ = ∅, and L = Lp − 3�y�), using Lemma 7.2 to obtain
Hypothesis 1.

Now we prove (6.5). Fix q ∈ Q and i ∈ {1, . . . , k}. We introduce the set L̃q,i of

linear forms L̃q,i,1, . . . , L̃q,i,k, where

L̃q,i,i(n) := n

and

L̃q,i,j(n) := q + (hj − hi)n (1 � j � k, j �= i).

We claim that this set of linear forms is admissible. Indeed, for any prime s �= q,
the solutions of

n
∏
j �=i

(q + (hj − hi)n) ≡ 0 (mod s)

are n ≡ 0 and n ≡ −q(hj − hi)
−1 (mod s) for hj �≡ hi (mod s), the number of

which is equal to #{hj (mod s)}. Thus,

S(L̃q,i) =

(
1 +O

(
k

x

))
S,

SBW (L̃q,i) =

(
1 +O

(
k

x

))
SBW ,

as before. Again, for s � WB we have that the hi are distinct (mod s), and so if
s < R and s � WB, we have ωL̃q,i

(s) = k and

{js,1(L̃q,i), . . . , js,ω(s)(L̃q,i)} = {1, . . . , k}.

In particular, Dk(L̃q,i) ∩ {(d1, . . . , dk) :
∏k

i=1 di � R} is independent of q, i, and so

λ(d1,...,dk)(L̃q,i) =

(
1 +O

(
k

x

))
λ(d1,...,dk),

where again the O( kx ) error is independent of d1, . . . , dk. From this, since q − hip
takes values in [−y, y], we have that

wk,L̃q,i,B,R(p) =

(
1 +O

(
k

x

))
wk,Lp,B,R(q − hip)

whenever p ∈ P (note that the di summation variable implicit on both sides of this
equation is necessarily equal to 1). Thus, recalling that P = P ∩ (x/2, x], we can
write the left-hand side of (6.5) as(

1 +O

(
k

x

)) ∑
n∈A(x/2)

1P(L̃q,i,i(n))wk,L̃q,i,B,R(n).

Applying the second conclusion (7.7) of Theorem 6 (with x replaced by x/2, L′ =

{L̃q,i,i}, and L = L̃q,i) and using Lemma 7.2 to obtain Hypothesis 1, this expression
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becomes (
1 +O

(
1

log102 x

))
Bk−1

ϕ(B)k−1
S#PL̃q,i,i,A(x/2)(logR)k+1Jk

+O

(
Bk

ϕ(B)k
S#A(x/2)(logR)k−1Ik

)
.

Clearly #A(x/2) = O(x), and from the prime number theorem one has

#PL̃q,i,i,A(x/2) =

(
1 +O

(
1

log102 x

))
x

2 log x

for any fixed C > 0. Using (8.2), (8.3), we can thus write the left-hand side of (6.5)
as (

1 + O

(
1

log102 x

))
u

k
τ

x

2 logk x
+O

(
1

logR
τ

x

logk x

)
.

From (6.1), (6.3), the second error term may be absorbed into the first, and (6.5)
follows.

Finally, we prove (6.6). Fix h = O(y/x) not equal to any of the hi, and fix
p ∈ P. By the prime number theorem, it suffices to show that∑

q∈Q
w(p, q − hp) � 1

log102 x
τ

y

logk x
.

By construction, the left-hand side is the same as∑
x−hp<n�y−hp

1P(n+ hp)wk,Lp,B,R(n),

which we can shift as∑
n∈A(y�−x�)

1P∩[xθ/10,+∞)(n− �y�+ 2�x�)wk,Lp−y�+2x�−hp,B,R(n).

Applying (7.8), we may then bound this by

� Δ

ϕ(Δ)

Bk

ϕ(B)k
S(Lp − �y�+ 2�x� − hp)y(logR)k−1Ik

=
Δ

ϕ(Δ)

Bk

ϕ(B)k
S(Lp)y(logR)k−1Ik,

where

Δ :=
k∏

i=1

|hp− hip|.

Applying (8.1), (8.2), we may simplify the above upper bound as

� Δ

ϕ(Δ)

y

(logR)(log x)k
τ.

Now h−hi = O(y/x) = O(log x) for each i, hence Δ � (O(x logx))k, and it follows
from (7.1), (8.4), and (6.1) that

Δ

ϕ(Δ)
� log2 Δ � log2 x � logR

log102 x
.

This concludes the proof of Theorem 5, and hence Theorem 1.
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[1] M. Ajtai, J. Komlós, and E. Szemerédi, A dense infinite Sidon sequence, European J. Combin.
2 (1981), no. 1, 1–11, DOI 10.1016/S0195-6698(81)80014-5. MR611925
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[11] P. Erdős, On the difference of consecutive primes, Quart. J. Math. Oxford Ser. 6 (1935),
124–128.
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