## Mixed $3$-manifolds are virtually special

HTML articles powered by AMS MathViewer

- by
Piotr Przytycki and Daniel T. Wise
**HTML**| PDF - J. Amer. Math. Soc.
**31**(2018), 319-347 Request permission

## Abstract:

Let $M$ be a compact oriented irreducible $3$-manifold which is neither a graph manifold nor a hyperbolic manifold. We prove that $\pi _1M$ is virtually special.## References

- Ian Agol,
*Tameness of hyperbolic 3-manifolds*(2004), available at arXix:GT/0405568. - Ian Agol,
*Criteria for virtual fibering*, J. Topol.**1**(2008), no. 2, 269–284. MR**2399130**, DOI 10.1112/jtopol/jtn003 - Ian Agol,
*The virtual Haken conjecture*, Doc. Math.**18**(2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR**3104553** - Matthias Aschenbrenner, Stefan Friedl, and Henry Wilton,
*3-manifold groups*, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2015. MR**3444187**, DOI 10.4171/154 - Hadi Bigdely and Daniel T. Wise,
*Quasiconvexity and relatively hyperbolic groups that split*, Michigan Math. J.**62**(2013), no. 2, 387–406. MR**3079269**, DOI 10.1307/mmj/1370870378 - Francis Bonahon,
*Bouts des variétés hyperboliques de dimension $3$*, Ann. of Math. (2)**124**(1986), no. 1, 71–158 (French). MR**847953**, DOI 10.2307/1971388 - Francis Bonahon,
*Geometric structures on 3-manifolds*, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 93–164. MR**1886669** - Martin R. Bridson,
*On the subgroups of semihyperbolic groups*, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, pp. 85–111. MR**1929323** - Danny Calegari and David Gabai,
*Shrinkwrapping and the taming of hyperbolic 3-manifolds*, J. Amer. Math. Soc.**19**(2006), no. 2, 385–446. MR**2188131**, DOI 10.1090/S0894-0347-05-00513-8 - Richard D. Canary,
*A covering theorem for hyperbolic $3$-manifolds and its applications*, Topology**35**(1996), no. 3, 751–778. MR**1396777**, DOI 10.1016/0040-9383(94)00055-7 - D. Cooper, D. D. Long, and A. W. Reid,
*Essential closed surfaces in bounded $3$-manifolds*, J. Amer. Math. Soc.**10**(1997), no. 3, 553–563. MR**1431827**, DOI 10.1090/S0894-0347-97-00236-1 - Michael W. Davis and Tadeusz Januszkiewicz,
*Right-angled Artin groups are commensurable with right-angled Coxeter groups*, J. Pure Appl. Algebra**153**(2000), no. 3, 229–235. MR**1783167**, DOI 10.1016/S0022-4049(99)00175-9 - Victor Gerasimov and Leonid Potyagailo,
*Quasiconvexity in relatively hyperbolic groups*, J. Reine Angew. Math.**710**(2016), 95–135. MR**3437561**, DOI 10.1515/crelle-2015-0029 - Frédéric Haglund and Daniel T. Wise,
*Special cube complexes*, Geom. Funct. Anal.**17**(2008), no. 5, 1551–1620. MR**2377497**, DOI 10.1007/s00039-007-0629-4 - Frédéric Haglund and Daniel T. Wise,
*Coxeter groups are virtually special*, Adv. Math.**224**(2010), no. 5, 1890–1903. MR**2646113**, DOI 10.1016/j.aim.2010.01.011 - Emily Hamilton,
*Abelian subgroup separability of Haken 3-manifolds and closed hyperbolic $n$-orbifolds*, Proc. London Math. Soc. (3)**83**(2001), no. 3, 626–646. MR**1851085**, DOI 10.1112/plms/83.3.626 - G. Christopher Hruska,
*Relative hyperbolicity and relative quasiconvexity for countable groups*, Algebr. Geom. Topol.**10**(2010), no. 3, 1807–1856. MR**2684983**, DOI 10.2140/agt.2010.10.1807 - G. C. Hruska and Daniel T. Wise,
*Finiteness properties of cubulated groups*, Compos. Math.**150**(2014), no. 3, 453–506. MR**3187627**, DOI 10.1112/S0010437X13007112 - Tim Hsu and Daniel T. Wise,
*On linear and residual properties of graph products*, Michigan Math. J.**46**(1999), no. 2, 251–259. MR**1704150**, DOI 10.1307/mmj/1030132408 - Kasia Jankiewicz,
*The fundamental theorem of cubical small cancellation theory*, Trans. Amer. Math. Soc.**369**(2017), no. 6, 4311–4346. MR**3624411**, DOI 10.1090/tran/6852 - Michael Kapovich,
*Hyperbolic manifolds and discrete groups*, Progress in Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001. MR**1792613** - P. B. Kronheimer and T. S. Mrowka,
*Dehn surgery, the fundamental group and SU$(2)$*, Math. Res. Lett.**11**(2004), no. 5-6, 741–754. MR**2106239**, DOI 10.4310/MRL.2004.v11.n6.a3 - Bernhard Leeb,
*$3$-manifolds with(out) metrics of nonpositive curvature*, Invent. Math.**122**(1995), no. 2, 277–289. MR**1358977**, DOI 10.1007/BF01231445 - Yi Liu,
*Virtual cubulation of nonpositively curved graph manifolds*, J. Topol.**6**(2013), no. 4, 793–822. MR**3145140**, DOI 10.1112/jtopol/jtt010 - Eduardo Martínez-Pedroza,
*Combination of quasiconvex subgroups of relatively hyperbolic groups*, Groups Geom. Dyn.**3**(2009), no. 2, 317–342. MR**2486802**, DOI 10.4171/GGD/59 - Ashot Minasyan,
*Separable subsets of GFERF negatively curved groups*, J. Algebra**304**(2006), no. 2, 1090–1100. MR**2264291**, DOI 10.1016/j.jalgebra.2006.03.050 - Piotr Przytycki and Daniel T. Wise,
*Graph manifolds with boundary are virtually special*, J. Topol.**7**(2014), no. 2, 419–435. MR**3217626**, DOI 10.1112/jtopol/jtt009 - Martin Roller,
*Poc sets, median algebras, and group actions. An extended study of Dunwoody’s construction and Sageev’s theorem.*(1998), available at www.personal.soton.ac.uk/gan/Roller.pdf. - J. Hyam Rubinstein and Shicheng Wang,
*$\pi _1$-injective surfaces in graph manifolds*, Comment. Math. Helv.**73**(1998), no. 4, 499–515. MR**1639876**, DOI 10.1007/s000140050066 - William P. Thurston,
*The Geometry and Topology of Three-Manifolds*(1980), Princeton University course notes, available at http://www.msri.org/publications/books/gt3m/. - William P. Thurston,
*A norm for the homology of $3$-manifolds*, Mem. Amer. Math. Soc.**59**(1986), no. 339, i–vi and 99–130. MR**823443** - Daniel T. Wise,
*From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry*, CBMS Regional Conference Series in Mathematics, vol. 117, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012. MR**2986461**, DOI 10.1090/cbms/117 - Daniel T. Wise,
*The structure of groups with quasiconvex hierarchy*, Ann. of Math. Stud. to appear.

## Additional Information

**Piotr Przytycki**- Affiliation: Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland; and Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada H3A 0B9
- MR Author ID: 804559
- Email: piotr.przytycki@mcgill.ca
**Daniel T. Wise**- Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada H3A 0B9
- MR Author ID: 604784
- ORCID: 0000-0003-0128-1353
- Email: wise@math.mcgill.ca
- Received by editor(s): June 6, 2012
- Received by editor(s) in revised form: July 24, 2013, May 14, 2014, and May 12, 2017
- Published electronically: October 19, 2017
- Additional Notes: The first author was partially supported by MNiSW grant N201 012 32/0718, the Foundation for Polish Science, National Science Centre DEC-2012/06/A/ST1/00259 and UMO-2015/18/M/ST1/00050, NSERC and FRQNT

The second author was supported by NSERC - © Copyright 2017 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**31**(2018), 319-347 - MSC (2010): Primary 20F65, 57M50
- DOI: https://doi.org/10.1090/jams/886
- MathSciNet review: 3758147